ISOPERIMETRY, SOBOLEV AND CONCENTRATION

INEQUALITIES THROUGH THE LENS OF CONVEXITY

(note that the statement of one exercise may be used for the proof of another).

(1)

(2)

Prove that det'/™ is concave on the class of n X n positive semi-definite
matrices:

A B>0 = det(A+ B)Y" > det(A)Y" + det(B)'/™ .

Recall that the collection K of all compact subsets of a complete separa-
ble metric space (2, d), equipped with the Hausdorff distance H (K1, K2) =
inf{e¢ >0; K; C (K2)c and Ky C (K1):}, is a complete metric space. Also,
recall that a Borel measure p on (€2, d) is called inner regular if for any Borel
set A:

pu(A) =sup{u(K); A D K compact},
and outer regular if:

w(A) =inf {u(G); AC G open}.

Recall that the Lebesgue measure Vol on Euclidean space is both inner and
outer regular.
(a) Show that any outer regular measure p is upper semi-continuous on

(K, H):
K -y K = u(K)>limsup p(K;).
1—00
(b) We have shown in class the Brunn-Minkowski (BM) inequality for sets
A, B which are unions of axis-aligned boxes. Deduce the BM inequality
for all compact sets A, B C R".
(c) Deduce the BM inequality for all Borell sets A, B C R™.

Recall that the Prékopa—Leindler (PL) inequality states that if f, g, h : R™ —
R, denote three measurable functions so that for some A € (0,1):

h(Az + (1= Ny) > f(@) g(y)' ™ Va,y e R".

for= (L) (L)

We'’ve seen in class that the n-D PL inequality implies the n-D BM in-
equality. The goal of this exercise is to show the reverse implication. We’ve
already seen that in class that the 1-D BM inequality implies the 1-D PL
inequality. Generalize this to arbitrary dimension n using two different meth-
ods:

Then:

1
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(a) Method 1. Apply the BM inequality in R™ to the level-sets of h, f, g,
and conclude using the 1-D PL inequality.

(b) Method 2. First prove, using the BM inequality in Rtk that if:
Az + (1= Ny)* = Af(@)F + (1= Ng(y)F Va,y e R"

for some natural number k, then:

(L) o) son(Lo)™

(do not use the statement of other exercises for the proof). Conclude
the n-D PL inequality by taking k£ — oo and using that for a,b > 0:

lim (Aa® + (1 — A)b°)Ye = oot .
e—0

(4) C. Borell generalized the BM/PL inequalities as follows: let ¥, : R —
R, denote a continuous, increasing in each variable, and 1-homogeneous
function (i.e. Uy(tz,ty) = tWy(z,y) VYVt > 0). Let fo, f1,fn > 0 denote
continuous integrable functions on R", so that [ fo, [ fi > 0. Then the
following statements are equivalent:

(a) For all compact Ag, A} C R™:

/ fa> ‘1’,\(/ fos [ f1)-
(1—>\)A0+)\A1 Ag Aq

(b) For all zg,z1 € R", for all a’,a' € R (the positive orthant):
A1 = Nzo + AT (1= A)af + Aaj) > Wa(fo(zo)Tyaf, fi (20T a;).

Note that the function ¥y (z,y) = ((1 —\)z'/"™ + Ay*/™)™ corresponds to the
BM inequality, whereas the function W (z,y) = 2'~*y* corresponds to the
PL inequality.

The proof that (a) implies (b) is immediate by testing (a) on small axis-
aligned boxes. Assuming that (b) implies (a) indeed holds in dimension
1, show that (b) implies (a) holds in any dimension n, using two different
methods:

(a) Induction on the dimension n.
(b) Proving (a) for sets Ag, A; which are unions of ko, k; small axis-aligned

boxes (respectively) having disjoint interiors, using induction on ko+k;.

(5) Using Borell’s theorem in the previous exercise, find the optimal function
Dy Ri — R4, so that for all fy, f1, f\ as above satisfying:

(1 = N)zo + Az1) > P (fo(zo), f1(z1)) Voo, 71 € R,

it follows that:
/f,\ > ‘I’N,,\(/fm/fl),
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where Uy \ = ((1 — N)z/N + Xy/N)N for some fixed N > n. The resulting
inequality is called the Borell / Brascamp—Lieb inequality (compare with
exercise 3 (b)).

(6) We’ve seen in class that if f : R™ — R, is a log-concave function:
VA€ [0,1] Yo,y € R"  fOhx+ (1-N)y) > f(2) f(y)' ™,
then p = f(z)dx is a log-concave measure:
VA,BCR" pu(AA+ (1 —X)B) > u(A) u(B)'.
Show the converse.

(7) Let f: R — R4. Show that if 0 < p < g, then then the property “f4(t) is
concave on its support” implies “fP(t) is concave on its support”. Passing
to the limit p — 0, show that this implies that log f(t) : R — RU {—o0} is
concave (i.e. that f is log-concave).

(8) Show that if A is compact in R"™ then so is its Steiner symmetrization Sy A.

(9) Let A be a compact subset of R™. Show that SgA = A for all centered
hyperplanes H, if and only if A is a centered Euclidean ball.

(10) Let K C R™ be a convex body, and let E be an m-dimensional subspace.
Show that the function:
1

Esy— Vol(KnN(y+ EL)mm |

is concave on its support.

(11) Let f : R® — R, be a function so that f1/* is concave on its support, for
some integer k, and let £ denote an m-dimensional subspace. Denoting:

o= [ fwyr,

show that the function:
1
E >y g(y)nik—m |

is concave on its support (Hint: construct an appropriate convex set in
R™*%). Taking k& — oo, deduce (what we have already seen in class) that
when f is log-concave, then so is its marginal g.

(12) Show that the isoperimetric inequality on R™:
0A] > n|By|" |40

implies the Brunn-Minkowski inequality when one of the sets is a Euclidean
ball D:
Vol(A + D)Y/™ > Vol(A)Y/™ + Vol(D)'/™ |

(say for sets A with smooth boundary).
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(13) Let K = —K be an origin-symmetric convex body in R"™ and E a linear
subspace of dimension k. Using exercise 10, prove the Rogers—Shephard
inequality:

K| < [K 1 | |Proj| < (Z) K] .

(14) Prove that Ry 3 7+ Vol(K NrD,)"™ is a concave function, for any convex
K in R™
(15) Recall that Steiner’s formula states that for all ¢ > 0:

n
n .
Vol(K +tBYy) = 2% <Z,>an‘(K)tz .
1=
Let K be a smooth convex body. Prove using Steiner’s formula and integra-
tion in polar coordinates that W1 (K) = Vol(B% )W (K), where recall:

W(K) = /S  hic(6)do(6)

Here o is the uniform probability measure on S" ! and hx (0) = sup {(z,0) ; v € K}
is the support function of K.

(16) Recall Minkowski’s generalization of Steiner’s theorem, stating that for any

convex sets Kq,...,K,, CR" and t{,...,t, > O:
m
VOZ(Z tiKi) = Z V(Kil, - 7Kin)tz'1 R 7
i=1 1<i) <ip<...<in<m

where V' (L1, ..., L) is the mixed volume of the convex sets L1, ..., L, C R"
- it is chosen to be invariant under permutations, and is multi-linear with-
respect-to Minkowski addition in each variable. It is a non-trivial fact that
it is always non-negative.

We use the notation V(K;i, L;n — i) to denote the mixed volume of the
tuple where K appears i times and L appears n — ¢ times. Comparing with
Steiner’s theorem, we see that W;(K) = V(K;i, By;n —1).

The deep Alexandrov—Fenchel inequality states that:

V(K1, Ko, Ls, ..., Ln)2 > V(Ky,Ky,Ls,...,L,)V(Ko, Ko, Ls,...,Ly) .
Using only this, deduce: ‘ A
(a) V(K;i,Lyn —1i) > Vol(K)/™Vol(L)"=9/,
(b) More generally, deduce Minkowski’s inequality:
V(Ky,...,Ky,) > (I, Vol(K;)) /™ .
(¢) Specializing (a) to the case i = n — 1, we have Minkowski’s inequality:
V(K;n—1,L;1) > Vol(K)"V/"Vol(L)/™ |

Note and explain why the case of L = Bj corresponds to the Euclidean
isoperimetric inequality (for convex bodies).
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(d) Use the inequality in (c) above and the multi-linearity of the mixed-
volumes V to deduce the Brunn—Minkowski inequality:

Vol(K + L)Y™ > Vol(K)'/" + Vol (L)/™ .
(e) Generalize all of the above to show that for alli =1,...,n:
Wi(K + L)Y > Wi(K)Y + WD)V, Yi=1,...,n.
(f) Show that foralli=1,...,n—1:
Wi(K)? > W1 (K)Wi (K),

and deduce that i — (W;(K)/Vol(Bg))"/? is a non-increasing sequence
(note that Wy (K) = Vol(BY)).

(17) Calculate the volume of By, the unit-ball of £}, by integrating the measure
exp(— ||z ||} )dz on R™.
P

(18) Consider the metric-measure space (S",d, jusn), where = pgn it the cor-
responding Haar probability measure, and d is the geodesic distance on S™.
Let f: S™ — R be a 1-Lipschitz function, let m(f) denote its median, and

define E(f) = [ fdu.
(a) Show that |E(f) —m(f)| < % for some constant C' > 0.

(b) Show that 0 < \/E(f?) — E(|f]) < % for some constant C' > 0.

(¢) Deduce concentration around E(f), and if f > 0, also around /E(f?).
In other words, show that:

1
p(x e S [f(x) — Ayl = 7) < Cexp <—n2 T2> ,

where Ay is either E(f), and when f > 0, also y/E(f?), for some
constant C' > 0.
(d) Show that if f is L-Lipschitz, then:

e €55 1) =) 1) <\ [Few (<507

(e) More generally, show that:

e €5 @) i) 2 wpte) <[5 (522
where wy(r) = sup {|f(z) — f(y)| ; d(z,y) < r} denotes the modulus of
continuity of f.

(19) Show that pgn(Bg(zo)) > cv/n — 1 Osin®1(0), where By(xg) is a geodesic
ball of radius 8 on S™, xg € S™ is any point, and ¢ > 0 is a constant.
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(20) Show that the Gaussian isoperimetric inequality on (R",|-|,~,), where 7,
denotes the standard Gaussian measure on R", namely:

W(A) =v(H) = A (A) > (H),
implies:
Y(A) =w(H) = y(A) > w(H,), Vr>0.

Here H is (any) half-plane, ,7 (C) denote the Gaussian boundary measure
of a Borel set C' C R", and C,. denote the r-extension of C.

(21) Let A denote a k x n random matrix with i.i.d. standard Gaussian entries.

Show that with very high-probability (quantify this!), the map T : R™ — R¥

given by T'(z) := ﬁAw is a good “Johnson-Lindenstrauss” map, i.e.:

(I =e)lzlrr < |T(2)|gr < (14 ¢)lz[rn
with very high-probability for a fixed z € R™.
(22) Assume that on a metric-measure (probability) space (€2, d, ) we know that:
VACQ p(A)>1/2 = pQ\A) <K(r) Vr>0.
Show that:
VACQ p(A)>K(eo) = pQ\Arie) < K(r) Vr>0.

Deduce that on S™, we have the following concentration property:
n—1 4

W(A) > aBexp(— T te2) o (ST Asey) < /7 Bexp(— " te2) .

(23) Two Point Symmetrization on (S™,d, Vol): let A be a compact set, let Sp A
denote its two-point symmetrization with respect to ® € S™, and let C
denote a spherical-cap having the same volume as A. Verify that:

(a) Vol(Se(A)) = Vol(A)
(b) Sa(A) is closed.

(C) (S@A)E C S¢(AE).

(d)

)

Se(C) is another spherical-cap.

(e) Theset T ={B C K(S™); Vol(B) =Vol(A) , Vol(B;) < Vol(A:)} is
closed in (KC(S™),H) (see exercise 2 to recall definitions).

(f) The mapping (K(S™),H) > B — Vol(BNC) is upper semi-continuous.

(24) Prove Bobkov’s 3-point inequality:

P <3 (fron (b;ayw}(b)u(b;ay) el

Here I denotes the Gaussian isoperimetric profile, i.e. I = ¢ o ®~!, where ¢
denotes the standard one-dimensional Gaussian density, and @ is its cumu-
lative distribution function.




ISOPERIMETRY, SOBOLEV AND CONCENTRATION INEQUALITIES THROUGH THE LENS OF CONVEXITY

(25) Formulate and prove the sharp isoperimetric inequality for the space (R*, ||-|| , V&),
where 7y, is the k-dimensional standard Gaussian measure and ||-|| is a norm
on R¥ having unit ball K = {z;||z| < 1}.
Guidance: repeat the argument of deducing the usual Gaussian isoperimetric
inequality starting from Ehrhard’s inequality.

(26) Given a mm-space (€2, d, i), prove a log-Sobolev inequality implies a Spectral-
Gap inequality. Specifically, prove that Aga > prg, by using f = 14+¢eh with
J hdp = 0 in the log-Sobolev inequality, and taking the limit as & — 0.

(27) Formulate and prove the tensorization property of the Spectral-Gap inequal-
ity (hint: recall the tensorization property of Bobkov’s inequality seen in
class).

(28) Given (9, d, ) with u(Q) = 1, prove that for all p > 1:

1
9 If = EufHLp(#) <|f- medufHLp(#) <3|f - EufHLp(#) )

where E, f = [ fdu and med, f denotes a median of f with respect to u,
i.e. a median of the push-forward of u via f.
Hint: start with ||| f — E,f|| — ||f — med,f|| | < |E.f —med, f| < ...

(29) Prove the Sobolev-Gagliardo inequalities in Euclidean space (R", |- |) (with
non-sharp constant):

n c
11Vglllze = -

1 llgll;» V compactly supported Lipschitz g ,
n—1p

WhereI§q<nl=%+

7 q
Euclidean isoperimetric inequality: |A| > ¢,|A| "= -
Hint: translate the isoperimetric inequality into its functional form ¢ = 1
above. Then substitute ¢ = ", and conclude by applying Holder’s inequal-

1ty.

1

—, and ¢, denotes the sharp constant in the

(30) Given a mm-space (2, d, ), prove that a Gaussian isoperimetric inequality
Z > DI, (here Z, denotes the Gaussian isoperimetric profile and D > 0)
implies a log-Sobolev inequality:

D2
2Ent“(f2)</\Vf|2du V Lipschitz f .

Hint: assume that f is bounded. Pass to Bobkov’s functional version of the
Gaussian isoperimetric inequality:

[ Vsl + (DL, (9)du = D, ( [ gdu) ¥ Lipschitz g2 0.1)

apply to g = ef?2, take the limit as ¢ — 0 and use that Z, (v) = v/2v4/log 1/v+
o(v) as v — 0.
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(31) Use Herbst’s method to show that if the following log-Sobolev inequality
holds for some p > 0:

2
p Ent,(g) S/ng‘ dp,

for all nice g > 0, and if f is 1-log-Lipschitz: |Vlog f| < 1, then f has
comparable LP(x) moments:

q—7p
17zao < o= L) U fll sy YO <p <o

(32) Recall that the spherically symmetric decreasing rearrangement of a mea-
surable function f : R™ — R, is defined as the function f* : R™ — R given
by:

f*(@) = sup{s > 0; Vol {f = s} = Vol(B(0, |z]))},
where B(0, a) denotes the ball centered at the origin of radius a. Show that:

Vol{f* >t} =Vol{f >t} Vt>O0.

(33) Prove the spherical Faber-Krahn inequality: for any  C S™, one has the fol-
lowing inequality for the first eigenvalue of the Laplacian with zero Dirichlet
boundary conditions on the corresponding domains:

AP (Q) = AP (),

where Q* denotes the geodesic ball having the same volume as (2.

(34) Let A, = A — (VV,V) denote the weighted Laplacian operator on the
Hilbert space H = L?(u), with invariant measure pu = exp(—V(x))dz on
R™. Recall That —A, is symmetric and positive semi-definite on the domain
D := C°(R™), the set of compactly supported smooth functions on R". The
purpose of this exercise is to outline how to prove that —A, is essentially
self-adjoint (E.S.A.) on the latter domain D. As known, being positive semi-
definite, this is equivalent to showing that (—=A, + Id)(D) = H. Assume
that there exists v € H so that:

(—Apf,u) +(f,u) =0 VfeD.

In other words, A,u = u weakly. Sobolev embedding theorems and elliptic
regularity consequently imply that in fact u € C;2.(R™), so that A u = u
in the classical sense. Show that this necessarily implies u = 0, yielding the
E.S.A. of —A,,.

Guidance: construct a family of functions f; > 0 in D pointwise converging
to the constant function 1 on R™ with |||V fi|||,~ < 1/k. Evaluate:

[ ftutsudn
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by integrating-by-parts, and conclude that:
4
2
[ #1vafdn < 5 [ ot
Letting & — oo, conclude that u = 0, as asserted.
Remark: the same proof applies to any complete weighted manifold.

(35) Calculate the spectrum of the Laplacian for both the Neumann and Dirichlet
boundary conditions on the n-dimensional box [0,a1] X ... x [0, ay].

(36) Let P; denote a reversible Markov diffusion semi-group on L?(p) where j is
a probability measure. Recall that y is called invariant for Py if [ P,fdu =
[ fdu for all f € L%*(u) and t > 0. Recall that u is called ergodic if
Pif =100 [ fdp in L%(p) for any f € L%(u).
(a) Show that an invariant measure does not have to be unique in general.
(b) Show that if y is ergodic then p is the unique invariant measure for P;.
(c) Give an example of a Markov process (or alternatively, of ), having a
unique invariant measure p which is not ergodic.

(37) Verity the log-Sobolev inequalities on the two-point space {—1,1}:
a’?+ b a? 4 b’

1 1
Va,b e R 5 (a®log(a®) + b log b*) — 5 log 5 < §(b —a)?
(38) Let f(x) = f(x1,...,2,) denote a measurable function on the product
measure space (21 X ... X Qp, X1 X ... X X = g @ ... @ py). Given
r = (x1,...,2y,), denote f¥(y;) == f(z1,...,%i-1,%i, Tit1,...,2yn) a func-

tion on (£2;, 3;, ;). Prove the sub-additivity of entropy:

Bnt, (1) <Y [ Bty (£7)du(a),
i=1
Guidance: recall that in general:

(1) Ent, (h) = sup { / hgdy ; / exp(g)dv < 1} .

Given g on the product space with [ exp(g)dp = 1, decompose g = > = | ¢
by defining for x = (z1,...,zy):

explgi(x)) = Jexp(g(a))dpa (1) .. dppia(i1)
Jexp(g(@))dp (z1) - .. dpi— (zi-1)dpi(z;)
(so that the function g‘(z) actually only depends on (zj,...,x,)). Verify

that indeed g = > | ¢ , that [exp((¢")¥(v:))dui(y;) =1 for all z, and use
this together with formula (1) above to conclude the claim.
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(39) Given a reversible semi-group P; with respect to an invariant measure p on
R™, the heat-kernel k; : ]R” x R™ — R is defined to be the function k(z,y)
(if it exists) so that P.f(z) = [ f(y)ke(z,y)du(y) for all f and x € R™.

(a) Let v denote the standard Gaussian probability measure on R™. Verify
that the Mehler formula for the Ornstein-Uhlenbeck (O-U) semi-group:

Pf(a / flexp(—t)z + /I — exp(—20y)d(y),

indeed solves the diffusion equation:

d
—P,f =LP,
dt tf tf7

for the O-U generator Lf = Af(z) — (z, V f(z)).

(b) Derive a formula for the O-U heat-kernel k:(z,y).

(c) For the standard heat equation on R", dtPt f = AP, f with respect to
the invariant Lebesgue measure dx, verify that the heat-kernel is given
by:

1 (z—y)?

()2 P )

k’t(xa y) =

(40) Recall that the tangent space to SO(n) at Id may be identified with anti-
symmetric n by n matrices. We equip it with the Riemannian metric induced
from Euclidean space R,

(a) Show that the dimension of SO(n) is n(n — 1)/2.

(b) Calculate a sharp lower bound on the Ricci curvature of SO(n). Use
that the sectional-curvature of the 2-plane spanned by two orthogonal
anti-symmetric matrices By and B is equal to 1 ||[Bx, Bs)||3g, Where
[Bi, Bo] = B1By — BoBy and ||-|| ;¢ denotes the Hilbert-Schmidt norm

(the norm induced from R”Q).

(41) Recall that Lichnerowicz’ spectral-gap estimate on the canonical unit-sphere
S™ C R gives Agq(S™) > n. Show that this is in fact an equality, by
finding a function f : R"*! — R so that [g, f =0 and:

n/san:/Snyvsnﬂ?.

Here Vgn is the (Riemannian) spherical gradient, i.e. :
Vsn f(8) = Projg.Vgns1 f(0) for 6 e S™ c R,

where Vgni1f denotes the usual gradient of f in R"*! and Proj,. denotes
orthogonal projection onto TypS™, i.e. the n-dimensional subspace orthogonal
to § € S C R+,
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(42) Use the generalized Bochner formula:

S8 VTP = (VF, Vg uf) + |Hessy fliys + Ricgu(V f, V),

to show the generalized Lichnerowicz estimate: On a complete weighted
manifold (M™", g, ), if Ricg, > Ag > 0, then Asq(M, g, 1) > A.

Guidance: you may assume (the correct fact) that the weighted Laplacian
—Ay , has discrete spectrum and in particular an eigenfunction correspond-
ing to the first non-trivial eigenvalue Agg.

Deduce that for Gaussian space, Asq(R",|-|,7») > 1. Show that in fact

Asa(R™, || ,7) = 1, by finding an appropriate test function f so that
Vary, (f) = [ IV f[* dyn.

(43) Recall that on a weighted manifold (M, g, ut), the ['-operators are constructed
as follows:

Cia(f.h) = 5 (LT3 R) = DL, B) = Ta(f, L)

with To(f,h) = f - h. In particular, I'1(f,h) = g(Vf,Vh) and I'y(f, h) =
try(Hessgf-Hessgh)+ Ricg,,(V f, Vh). Recall that we set I';(f) := T';(f, f),
and write that I'o > AI'y if this holds whenever evaluating any function f.

(a) Show that the assumption I's > AI'; for A € R implies the following two
pointwise inequalities:

exp(2At) — 1 — exp(—2At)

1
(2) h\ VP f? < P(f*)—Pi(f)* < 3 PV f?).
(with the interpretation when A\ = 0 in the limiting sense, e.g. %] —0 =
2t). Guidance: consider the function Ps((P;_sf)?), and repeat the proof
we saw in class for showing the inequality between left and right expres-
sions:
(3) VPLf? < exp(=22) P (|V f[7).

(b) Deduce from part (a) an alternative proof of the generalized Lichnerow-
icz estimate of exercise 42.

(c) Show that any of the three inequalities appearing in (2) and (3) above
are in fact equivalent to the property that I's > Al'y.



