
ISOPERIMETRY, SOBOLEV AND CONCENTRATION

INEQUALITIES THROUGH THE LENS OF CONVEXITY

(note that the statement of one exercise may be used for the proof of another).

(1) Prove that det1/n is concave on the class of n × n positive semi-definite
matrices:

A,B ≥ 0 ⇒ det(A+B)1/n ≥ det(A)1/n + det(B)1/n .

(2) Recall that the collection K of all compact subsets of a complete separa-
ble metric space (Ω, d), equipped with the Hausdorff distance H(K1,K2) =
inf {ε > 0 ; K1 ⊂ (K2)ε and K2 ⊂ (K1)ε}, is a complete metric space. Also,
recall that a Borel measure µ on (Ω, d) is called inner regular if for any Borel
set A:

µ(A) = sup {µ(K) ; A ⊃ K compact} ,
and outer regular if:

µ(A) = inf {µ(G) ; A ⊂ G open} .
Recall that the Lebesgue measure V ol on Euclidean space is both inner and
outer regular.
(a) Show that any outer regular measure µ is upper semi-continuous on

(K,H):

Ki →H K ⇒ µ(K) ≥ lim sup
i→∞

µ(Ki).

(b) We have shown in class the Brunn–Minkowski (BM) inequality for sets
A,B which are unions of axis-aligned boxes. Deduce the BM inequality
for all compact sets A,B ⊂ Rn.

(c) Deduce the BM inequality for all Borell sets A,B ⊂ Rn.

(3) Recall that the Prékopa–Leindler (PL) inequality states that if f, g, h : Rn →
R+ denote three measurable functions so that for some λ ∈ (0, 1):

h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ ∀x, y ∈ Rn .
Then: ∫

Rn

h ≥
(∫

Rn

f

)λ(∫
Rn

g

)1−λ
.

We’ve seen in class that the n-D PL inequality implies the n-D BM in-
equality. The goal of this exercise is to show the reverse implication. We’ve
already seen that in class that the 1-D BM inequality implies the 1-D PL
inequality. Generalize this to arbitrary dimension n using two different meth-
ods:

1
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(a) Method 1. Apply the BM inequality in Rn to the level-sets of h, f, g,
and conclude using the 1-D PL inequality.

(b) Method 2. First prove, using the BM inequality in Rn+k, that if:

h(λx+ (1− λ)y)
1
k ≥ λf(x)

1
k + (1− λ)g(y)

1
k ∀x, y ∈ Rn

for some natural number k, then:(∫
Rn

h

) 1
n+k

≥ λ
(∫

Rn

f

) 1
n+k

+ (1− λ)

(∫
Rn

g

) 1
n+k

.

(do not use the statement of other exercises for the proof). Conclude
the n-D PL inequality by taking k →∞ and using that for a, b > 0:

lim
ε→0

(λaε + (1− λ)bε)1/ε → aλb1−λ .

(4) C. Borell generalized the BM/PL inequalities as follows: let Ψλ : R2
+ →

R+ denote a continuous, increasing in each variable, and 1-homogeneous
function (i.e. Ψλ(tx, ty) = tΨλ(x, y) ∀t > 0). Let f0, f1, fλ ≥ 0 denote
continuous integrable functions on Rn, so that

∫
f0,
∫
f1 > 0. Then the

following statements are equivalent:
(a) For all compact A0, A1 ⊂ Rn:∫

(1−λ)A0+λA1

fλ ≥ Ψλ(

∫
A0

f0,

∫
A1

f1).

(b) For all x0, x1 ∈ Rn, for all a0, a1 ∈ Rn+ (the positive orthant):

fλ((1− λ)x0 + λx1)Πn
i=1((1− λ)a0

i + λa1
i ) ≥ Ψλ(f0(x0)Πn

i=1a
0
i , f1(x1)Πn

i=1a
1
i ).

Note that the function Ψλ(x, y) = ((1−λ)x1/n +λy1/n)n corresponds to the
BM inequality, whereas the function Ψλ(x, y) = x1−λyλ corresponds to the
PL inequality.

The proof that (a) implies (b) is immediate by testing (a) on small axis-
aligned boxes. Assuming that (b) implies (a) indeed holds in dimension
1, show that (b) implies (a) holds in any dimension n, using two different
methods:
(a) Induction on the dimension n.
(b) Proving (a) for sets A0, A1 which are unions of k0, k1 small axis-aligned

boxes (respectively) having disjoint interiors, using induction on k0+k1.

(5) Using Borell’s theorem in the previous exercise, find the optimal function
ΦN,n,λ : R2

+ → R+, so that for all f0, f1, fλ as above satisfying:

fλ((1− λ)x0 + λx1) ≥ ΦN,n,λ(f0(x0), f1(x1)) ∀x0, x1 ∈ Rn,

it follows that: ∫
fλ ≥ ΨN,λ(

∫
f0,

∫
f1),
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where ΨN,λ = ((1− λ)x1/N + λy1/N )N for some fixed N ≥ n. The resulting
inequality is called the Borell / Brascamp–Lieb inequality (compare with
exercise 3 (b)).

(6) We’ve seen in class that if f : Rn → R+ is a log-concave function:

∀λ ∈ [0, 1] ∀x, y ∈ Rn f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ ,

then µ = f(x)dx is a log-concave measure:

∀A,B ⊂ Rn µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ .

Show the converse.

(7) Let f : R → R+. Show that if 0 < p < q, then then the property “f q(t) is
concave on its support” implies “fp(t) is concave on its support”. Passing
to the limit p → 0, show that this implies that log f(t) : R → R ∪ {−∞} is
concave (i.e. that f is log-concave).

(8) Show that if A is compact in Rn then so is its Steiner symmetrization SHA.

(9) Let A be a compact subset of Rn. Show that SHA = A for all centered
hyperplanes H, if and only if A is a centered Euclidean ball.

(10) Let K ⊂ Rn be a convex body, and let E be an m-dimensional subspace.
Show that the function:

E 3 y 7→ V ol(K ∩ (y + E⊥))
1

n−m ,

is concave on its support.

(11) Let f : Rn → R+ be a function so that f1/k is concave on its support, for
some integer k, and let E denote an m-dimensional subspace. Denoting:

g(y) :=

∫
y+E⊥

f(x)dx ,

show that the function:

E 3 y 7→ g(y)
1

n+k−m ,

is concave on its support (Hint: construct an appropriate convex set in
Rn+k). Taking k → ∞, deduce (what we have already seen in class) that
when f is log-concave, then so is its marginal g.

(12) Show that the isoperimetric inequality on Rn:

|∂A| ≥ n |Bn
2 |

1/n |A|(n−1)/n ,

implies the Brunn-Minkowski inequality when one of the sets is a Euclidean
ball D:

Vol(A+D)1/n ≥ Vol(A)1/n + Vol(D)1/n ,

(say for sets A with smooth boundary).
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(13) Let K = −K be an origin-symmetric convex body in Rn and E a linear
subspace of dimension k. Using exercise 10, prove the Rogers–Shephard
inequality:

|K| ≤
∣∣∣K ∩ E⊥∣∣∣ |ProjEK| ≤ (n

k

)
|K| .

(14) Prove that R+ 3 r 7→ V ol(K∩rDn)1/n is a concave function, for any convex
K in Rn.

(15) Recall that Steiner’s formula states that for all t ≥ 0:

V ol(K + tBn
2 ) =

n∑
i=0

(
n

i

)
Wn−i(K)ti .

Let K be a smooth convex body. Prove using Steiner’s formula and integra-
tion in polar coordinates that W1(K) = V ol(Bn

2 )W (K), where recall:

W (K) :=

∫
Sn−1

hK(θ)dσ(θ) .

Here σ is the uniform probability measure on Sn−1 and hK(θ) = sup {〈x, θ〉 ; x ∈ K}
is the support function of K.

(16) Recall Minkowski’s generalization of Steiner’s theorem, stating that for any
convex sets K1, . . . ,Km ⊂ Rn and t1, . . . , tm ≥ 0:

V ol(
m∑
i=1

tiKi) =
∑

1≤i1<i2<...<in≤m
V (Ki1 , . . . ,Kin)ti1 · · · tin ,

where V (L1, . . . , Ln) is the mixed volume of the convex sets L1, . . . , Ln ⊂ Rn
- it is chosen to be invariant under permutations, and is multi-linear with-
respect-to Minkowski addition in each variable. It is a non-trivial fact that
it is always non-negative.

We use the notation V (K; i, L;n − i) to denote the mixed volume of the
tuple where K appears i times and L appears n− i times. Comparing with
Steiner’s theorem, we see that Wi(K) = V (K; i, Bn

2 ;n− i).
The deep Alexandrov–Fenchel inequality states that:

V (K1,K2, L3, . . . , Ln)2 ≥ V (K1,K1, L3, . . . , Ln)V (K2,K2, L3, . . . , Ln) .

Using only this, deduce:
(a) V (K; i, L;n− i) ≥ V ol(K)i/nV ol(L)(n−i)/n.
(b) More generally, deduce Minkowski’s inequality:

V (K1, . . . ,Kn) ≥ (Πn
i=1V ol(Ki))

1/n .

(c) Specializing (a) to the case i = n− 1, we have Minkowski’s inequality:

V (K;n− 1, L; 1) ≥ V ol(K)(n−1)/nV ol(L)1/n .

Note and explain why the case of L = Bn
2 corresponds to the Euclidean

isoperimetric inequality (for convex bodies).
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(d) Use the inequality in (c) above and the multi-linearity of the mixed-
volumes V to deduce the Brunn–Minkowski inequality:

V ol(K + L)1/n ≥ V ol(K)1/n + V ol(L)1/n .

(e) Generalize all of the above to show that for all i = 1, . . . , n:

Wi(K + L)1/i ≥Wi(K)1/i +Wi(L)1/i , ∀i = 1, . . . , n .

(f) Show that for all i = 1, . . . , n− 1:

Wi(K)2 ≥Wi−1(K)Wi+1(K),

and deduce that i 7→ (Wi(K)/V ol(Bn
2 ))1/i is a non-increasing sequence

(note that W0(K) = V ol(Bn
2 )).

(17) Calculate the volume of Bn
p , the unit-ball of `np , by integrating the measure

exp(−‖x‖p`np )dx on Rn.

(18) Consider the metric-measure space (Sn, d, µSn), where µ = µSn it the cor-
responding Haar probability measure, and d is the geodesic distance on Sn.
Let f : Sn → R be a 1-Lipschitz function, let m(f) denote its median, and
define E(f) =

∫
fdµ.

(a) Show that |E(f)−m(f)| ≤ C√
n

for some constant C > 0.

(b) Show that 0 ≤
√
E(f2)− E(|f |) ≤ C√

n
for some constant C > 0.

(c) Deduce concentration around E(f), and if f ≥ 0, also around
√
E(f2).

In other words, show that:

µ(x ∈ Sn ; |f(x)−Af | ≥ r) ≤ C exp

(
−n− 1

2
r2

)
,

where Af is either E(f), and when f ≥ 0, also
√
E(f2), for some

constant C > 0.
(d) Show that if f is L-Lipschitz, then:

µ(x ∈ Sn ; f(x)−m(f) ≥ r) ≤
√
π

8
exp

(
−n− 1

2L2
r2

)
.

(e) More generally, show that:

µ(x ∈ Sn ; f(x)−m(f) ≥ ωf (r)) ≤
√
π

8
exp

(
−n− 1

2
r2

)
,

where ωf (r) = sup {|f(x)− f(y)| ; d(x, y) ≤ r} denotes the modulus of
continuity of f .

(19) Show that µSn(Bθ(x0)) ≥ c
√
n− 1 θ sinn−1(θ), where Bθ(x0) is a geodesic

ball of radius θ on Sn, x0 ∈ Sn is any point, and c > 0 is a constant.
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(20) Show that the Gaussian isoperimetric inequality on (Rn, |·| , γn), where γn
denotes the standard Gaussian measure on Rn, namely:

γn(A) = γn(H) ⇒ γ+
n (A) ≥ γ+

n (H) ,

implies:

γn(A) = γn(H) ⇒ γn(Ar) ≥ γn(Hr) , ∀r > 0 .

Here H is (any) half-plane, γ+
n (C) denote the Gaussian boundary measure

of a Borel set C ⊂ Rn, and Cr denote the r-extension of C.

(21) Let A denote a k × n random matrix with i.i.d. standard Gaussian entries.
Show that with very high-probability (quantify this!), the map T : Rn → Rk
given by T (x) := 1√

k
Ax is a good “Johnson-Lindenstrauss” map, i.e.:

(1− ε)|z|Rn ≤ |T (z)|Rk ≤ (1 + ε)|z|Rn

with very high-probability for a fixed z ∈ Rn.

(22) Assume that on a metric-measure (probability) space (Ω, d, µ) we know that:

∀A ⊂ Ω µ(A) ≥ 1/2 ⇒ µ(Ω \Ar) < K(r) ∀r > 0 .

Show that:

∀A ⊂ Ω µ(A) ≥ K(ε0) ⇒ µ(Ω \Ar+ε0) < K(r) ∀r > 0 .

Deduce that on Sn, we have the following concentration property:

µ(A) ≥
√
π/8 exp(−n− 1

2
ε2

0) ⇒ µ(Sn \A2ε0) ≤
√
π/8 exp(−n− 1

2
ε2

0) .

(23) Two Point Symmetrization on (Sn, d, V ol): let A be a compact set, let SΦA
denote its two-point symmetrization with respect to Φ ∈ Sn, and let C
denote a spherical-cap having the same volume as A. Verify that:
(a) V ol(SΦ(A)) = V ol(A)
(b) SΦ(A) is closed.
(c) (SΦA)ε ⊂ Sφ(Aε).
(d) SΦ(C) is another spherical-cap.
(e) The set T = {B ⊂ K(Sn) ; V ol(B) = V ol(A) , V ol(Bε) ≤ V ol(Aε)} is

closed in (K(Sn),H) (see exercise 2 to recall definitions).
(f) The mapping (K(Sn),H) 3 B 7→ V ol(B ∩C) is upper semi-continuous.

(24) Prove Bobkov’s 3-point inequality:

I

(
a+ b

2

)
≤ 1

2

√I(a)2 +

(
b− a

2

)2

+

√
I(b)2 +

(
b− a

2

)2
 , ∀a, b ∈ [0, 1] .

Here I denotes the Gaussian isoperimetric profile, i.e. I = φ ◦Φ−1, where φ
denotes the standard one-dimensional Gaussian density, and Φ is its cumu-
lative distribution function.
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(25) Formulate and prove the sharp isoperimetric inequality for the space (Rk, ‖·‖ , γk),
where γk is the k-dimensional standard Gaussian measure and ‖·‖ is a norm
on Rk having unit ball K = {x; ‖x‖ ≤ 1}.
Guidance: repeat the argument of deducing the usual Gaussian isoperimetric
inequality starting from Ehrhard’s inequality.

(26) Given a mm-space (Ω, d, µ), prove a log-Sobolev inequality implies a Spectral-
Gap inequality. Specifically, prove that λSG ≥ ρLS , by using f = 1+εh with∫
hdµ = 0 in the log-Sobolev inequality, and taking the limit as ε→ 0.

(27) Formulate and prove the tensorization property of the Spectral-Gap inequal-
ity (hint: recall the tensorization property of Bobkov’s inequality seen in
class).

(28) Given (Ω, d, µ) with µ(Ω) = 1, prove that for all p ≥ 1:

1

2
‖f − Eµf‖Lp(µ) ≤ ‖f −medµf‖Lp(µ) ≤ 3 ‖f − Eµf‖Lp(µ) ,

where Eµf =
∫
fdµ and medµf denotes a median of f with respect to µ,

i.e. a median of the push-forward of µ via f .
Hint: start with | ‖f − Eµf‖ − ‖f −medµf‖ | ≤ |Eµf −medµf | ≤ . . ..

(29) Prove the Sobolev-Gagliardo inequalities in Euclidean space (Rn, | · |) (with
non-sharp constant):

‖|∇g|‖Lq ≥
n

n− 1

cn
p
‖g‖Lp ∀ compactly supported Lipschitz g ,

where 1 ≤ q < n, 1
q = 1

p + 1
n , and cn denotes the sharp constant in the

Euclidean isoperimetric inequality: |∂A| ≥ cn|A|
n−1
n .

Hint: translate the isoperimetric inequality into its functional form q = 1
above. Then substitute g = f r, and conclude by applying Hölder’s inequal-
ity.

(30) Given a mm-space (Ω, d, µ), prove that a Gaussian isoperimetric inequality
I ≥ DIγ (here Iγ denotes the Gaussian isoperimetric profile and D > 0)
implies a log-Sobolev inequality:

D2

2
Entµ(f2) ≤

∫
|∇f |2dµ ∀ Lipschitz f .

Hint: assume that f is bounded. Pass to Bobkov’s functional version of the
Gaussian isoperimetric inequality:∫ √
|∇g|2 + (DIγ(g))2dµ ≥ DIγ(

∫
gdµ) ∀ Lipschitz g : Ω→ [0, 1] ,

apply to g = εf2, take the limit as ε→ 0 and use that Iγ(v) =
√

2v
√

log 1/v+
o(v) as v → 0.
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(31) Use Herbst’s method to show that if the following log-Sobolev inequality
holds for some ρ > 0:

ρ Entµ(g) ≤
∫
|∇g|2

g
dµ,

for all nice g > 0, and if f is 1-log-Lipschitz: |∇ log f | ≤ 1, then f has
comparable Lp(µ) moments:

‖f‖Lq(µ) ≤ exp(
q − p
ρ

) ‖f‖Lp(µ) ∀0 < p < q.

(32) Recall that the spherically symmetric decreasing rearrangement of a mea-
surable function f : Rn → R+ is defined as the function f∗ : Rn → R+ given
by:

f∗(x) = sup {s ≥ 0;V ol {f ≥ s} ≥ V ol(B(0, |x|))} ,
where B(0, a) denotes the ball centered at the origin of radius a. Show that:

V ol {f∗ ≥ t} = V ol {f ≥ t} ∀t ≥ 0.

(33) Prove the spherical Faber-Krahn inequality: for any Ω ⊂ Sn, one has the fol-
lowing inequality for the first eigenvalue of the Laplacian with zero Dirichlet
boundary conditions on the corresponding domains:

λD1 (Ω) ≥ λD1 (Ω∗),

where Ω∗ denotes the geodesic ball having the same volume as Ω.

(34) Let ∆µ = ∆ − 〈∇V,∇〉 denote the weighted Laplacian operator on the
Hilbert space H = L2(µ), with invariant measure µ = exp(−V (x))dx on
Rn. Recall That −∆µ is symmetric and positive semi-definite on the domain
D := C∞c (Rn), the set of compactly supported smooth functions on Rn. The
purpose of this exercise is to outline how to prove that −∆µ is essentially
self-adjoint (E.S.A.) on the latter domain D. As known, being positive semi-

definite, this is equivalent to showing that (−∆µ + Id)(D) = H. Assume
that there exists u ∈ H so that:

〈−∆µf, u〉+ 〈f, u〉 = 0 ∀f ∈ D.

In other words, ∆µu = u weakly. Sobolev embedding theorems and elliptic
regularity consequently imply that in fact u ∈ C∞loc(Rn), so that ∆µu = u
in the classical sense. Show that this necessarily implies u = 0, yielding the
E.S.A. of −∆µ.
Guidance: construct a family of functions fk ≥ 0 in D pointwise converging
to the constant function 1 on Rn with ‖|∇fk|‖L∞ ≤ 1/k. Evaluate:∫

f2
ku∆µudµ,
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by integrating-by-parts, and conclude that:∫
f2
k |∇u|

2 dµ ≤ 4

k2

∫
u2dµ.

Letting k →∞, conclude that u = 0, as asserted.
Remark: the same proof applies to any complete weighted manifold.

(35) Calculate the spectrum of the Laplacian for both the Neumann and Dirichlet
boundary conditions on the n-dimensional box [0, a1]× . . .× [0, an].

(36) Let Pt denote a reversible Markov diffusion semi-group on L2(µ) where µ is
a probability measure. Recall that µ is called invariant for Pt if

∫
Ptfdµ =∫

fdµ for all f ∈ L2(µ) and t ≥ 0. Recall that µ is called ergodic if
Ptf →t→∞

∫
fdµ in L2(µ) for any f ∈ L2(µ).

(a) Show that an invariant measure does not have to be unique in general.
(b) Show that if µ is ergodic then µ is the unique invariant measure for Pt.
(c) Give an example of a Markov process (or alternatively, of Pt), having a

unique invariant measure µ which is not ergodic.

(37) Verify the log-Sobolev inequalities on the two-point space {−1, 1}:

∀a, b ∈ R
1

2

(
a2 log(a2) + b2 log b2

)
− a2 + b2

2
log

a2 + b2

2
≤ 1

2
(b− a)2.

(38) Let f(x) = f(x1, . . . , xn) denote a measurable function on the product
measure space (Ω1 × . . . × Ωn,Σ1 × . . . × Σn, µ := µ1 ⊗ . . . ⊗ µn). Given
x = (x1, . . . , xn), denote fxi (yi) := f(x1, . . . , xi−1, yi, xi+1, . . . , xn) a func-
tion on (Ωi,Σi, µi). Prove the sub-additivity of entropy:

Entµ(f) ≤
n∑
i=1

∫
Entµi(f

x
i )dµ(x).

Guidance: recall that in general:

(1) Entν(h) = sup

{∫
hgdν ;

∫
exp(g)dν ≤ 1

}
.

Given g on the product space with
∫

exp(g)dµ = 1, decompose g =
∑n

i=1 g
i

by defining for x = (x1, . . . , xn):

exp(gi(x)) =

∫
exp(g(x))dµ1(x1) . . . dµi−1(xi−1)∫

exp(g(x))dµ1(x1) . . . dµi−1(xi−1)dµi(xi)

(so that the function gi(x) actually only depends on (xi, . . . , xn)). Verify
that indeed g =

∑n
i=1 g

i , that
∫

exp((gi)xi (yi))dµi(yi) ≡ 1 for all x, and use
this together with formula (1) above to conclude the claim.
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(39) Given a reversible semi-group Pt with respect to an invariant measure µ on
Rn, the heat-kernel kt : Rn×Rn → R+ is defined to be the function kt(x, y)
(if it exists) so that Ptf(x) =

∫
f(y)kt(x, y)dµ(y) for all f and x ∈ Rn.

(a) Let γ denote the standard Gaussian probability measure on Rn. Verify
that the Mehler formula for the Ornstein-Uhlenbeck (O-U) semi-group:

Ptf(x) =

∫
f(exp(−t)x+

√
1− exp(−2t)y)dγ(y),

indeed solves the diffusion equation:

d

dt
Ptf = LPtf,

for the O-U generator Lf = ∆f(x)− 〈x,∇f(x)〉.
(b) Derive a formula for the O-U heat-kernel kt(x, y).
(c) For the standard heat equation on Rn, d

dtPtf = ∆Ptf with respect to
the invariant Lebesgue measure dx, verify that the heat-kernel is given
by:

kt(x, y) =
1

(4πt)n/2
exp(−(x− y)2

4t
).

(40) Recall that the tangent space to SO(n) at Id may be identified with anti-
symmetric n by n matrices. We equip it with the Riemannian metric induced

from Euclidean space Rn2
.

(a) Show that the dimension of SO(n) is n(n− 1)/2.
(b) Calculate a sharp lower bound on the Ricci curvature of SO(n). Use

that the sectional-curvature of the 2-plane spanned by two orthogonal
anti-symmetric matrices B1 and B2 is equal to 1

4 ‖[B1, B2]‖2HS , where
[B1, B2] = B1B2 −B2B1 and ‖·‖HS denotes the Hilbert-Schmidt norm

(the norm induced from Rn2
).

(41) Recall that Lichnerowicz’ spectral-gap estimate on the canonical unit-sphere
Sn ⊂ Rn+1 gives λSG(Sn) ≥ n. Show that this is in fact an equality, by
finding a function f : Rn+1 → R so that

∫
Sn f = 0 and:

n

∫
Sn

f2 =

∫
Sn

|∇Snf |2 .

Here ∇Sn is the (Riemannian) spherical gradient, i.e. :

∇Snf(θ) = Projθ⊥∇Rn+1f(θ) for θ ∈ Sn ⊂ Rn+1,

where ∇Rn+1f denotes the usual gradient of f in Rn+1, and Projθ⊥ denotes
orthogonal projection onto TθS

n, i.e. the n-dimensional subspace orthogonal
to θ ∈ Sn ⊂ Rn+1.
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(42) Use the generalized Bochner formula:

1

2
∆g,µ |∇f |2 = 〈∇f,∇∆g,µf〉+ ‖Hessgf‖2HS +Ricg,µ(∇f,∇f),

to show the generalized Lichnerowicz estimate: On a complete weighted
manifold (Mn, g, µ), if Ricg,µ ≥ λg > 0, then λSG(M, g, µ) ≥ λ.
Guidance: you may assume (the correct fact) that the weighted Laplacian
−∆g,µ has discrete spectrum and in particular an eigenfunction correspond-
ing to the first non-trivial eigenvalue λSG.
Deduce that for Gaussian space, λSG(Rn, |·| , γn) ≥ 1. Show that in fact
λSG(Rn, |·| , γn) = 1, by finding an appropriate test function f so that

V arγn(f) =
∫
|∇f |2 dγn.

(43) Recall that on a weighted manifold (M, g, µ), the Γ-operators are constructed
as follows:

Γi+1(f, h) =
1

2
(LΓi(f, h)− Γi(Lf, h)− Γi(f, Lh))

with Γ0(f, h) = f · h. In particular, Γ1(f, h) = g(∇f,∇h) and Γ2(f, h) =
trg(Hessgf ·Hessgh)+Ricg,µ(∇f,∇h). Recall that we set Γi(f) := Γi(f, f),
and write that Γ2 ≥ λΓ1 if this holds whenever evaluating any function f .

(a) Show that the assumption Γ2 ≥ λΓ1 for λ ∈ R implies the following two
pointwise inequalities:

(2)
exp(2λt)− 1

λ
|∇Ptf |2 ≤ Pt(f2)−Pt(f)2 ≤ 1− exp(−2λt)

λ
Pt(|∇f |2).

(with the interpretation when λ = 0 in the limiting sense, e.g. exp(2λt)−1
λ |λ=0 =

2t). Guidance: consider the function Ps((Pt−sf)2), and repeat the proof
we saw in class for showing the inequality between left and right expres-
sions:

(3) |∇Ptf |2 ≤ exp(−2λt)Pt(|∇f |2).

(b) Deduce from part (a) an alternative proof of the generalized Lichnerow-
icz estimate of exercise 42.

(c) Show that any of the three inequalities appearing in (2) and (3) above
are in fact equivalent to the property that Γ2 ≥ λΓ1.


