# The Globalization Theorem for the Curvature-Dimension Condition 

Emanuel Milman<br>Technion - Israel Institute of Technology

## Bonn

September 2017

## joint work with Fabio Cavalletti (SISSA)



This project has received funding from the European Research Council (ERC) under the European Union's
Horizon 2020 research and innovation programme (grant agreement No. 637851).

## $L^{2}$ Optimal Transport - Introduction

- $(X, \mathrm{~d}, \mathfrak{m})$ Polish space with finite Borel measure is called m.m.s.
- $L^{2}$-Wasserstein distance between $\mu_{0}, \mu_{1} \in \mathcal{P}(X)$ :
$W_{2}\left(\mu_{0}, \mu_{1}\right):=\inf \left\{\left(\int_{X \times X} \mathrm{~d}^{2}(x, y) \pi(d x, d y)\right)^{\frac{1}{2}} ; \begin{array}{c}\pi \in \mathcal{P}(X \times X), \\ \pi_{0}=\mu_{0}, \pi_{1}=\mu_{1}\end{array}\right\} ;$
$W_{2}$ weakly metrizes $\mathcal{P}_{2}(X)$, yielding Polish ( $\left.\mathcal{P}_{2}(X), W_{2}\right)$.
- $(X, \mathrm{~d})$ is geodesic space iff $\left(\mathcal{P}_{2}(X), W_{2}\right)$ is geodesic space.

- $(X, \mathrm{~d}, \mathfrak{m})$ Polish space with finite Borel measure is called m.m.s.
- $L^{2}$-Wasserstein distance between $\mu_{0}, \mu_{1} \in \mathcal{P}(X)$ :
$W_{2}\left(\mu_{0}, \mu_{1}\right):=\inf \left\{\left(\int_{X \times X} d^{2}(x, y) \pi(d x, d y)\right)^{\frac{1}{2}} ; \begin{array}{c}\pi \in \mathcal{P}(X \times X), \\ \pi_{0}=\mu_{0}, \pi_{1}=\mu_{1}\end{array}\right\} ;$
$W_{2}$ weakly metrizes $\mathcal{P}_{2}(X)$, yielding Polish ( $\left.\mathcal{P}_{2}(X), W_{2}\right)$.
- $(X, \mathrm{~d})$ is geodesic space iff $\left(\mathcal{P}_{2}(X), W_{2}\right)$ is geodesic space.
- Any geodesic $[0,1] \ni t \mapsto \mu_{t} \in \mathcal{P}_{2}(W)$ can be lifted to an Optimal Dynamical Plan $\nu \in \mathcal{P}(\operatorname{Geo}(X))$, so that $\left(\mathrm{e}_{t}\right)_{\sharp}(\nu)=\mu_{t}$, where:
(evaluation map) $\mathrm{e}_{t}: \operatorname{Geo}(X) \ni \gamma \mapsto \gamma_{t} \in X$.
$\operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)=\operatorname{all}$ such $\nu$ 's with $\left(\mathrm{e}_{\mathrm{i}}\right)_{\sharp}(\nu)=\mu_{i}(i=0,1)$.
$(X, \mathrm{~d})$ is called non-branching if geodesics do not branch at an
interior-point into two separate geodesics.
$(X, \mathrm{~d}, \mathrm{~m})$ is called essentially non-branching (e.n.b.) if for any
$\mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{a c}(X, \mathrm{~d}, \mathrm{~m})$, any $\nu$ is concentrated on non-branching
subset $G \subset \operatorname{Geo}(X)$ (e.g. mGH limits of manifolds w/ Ric $\geq K)$.
- ( $X, \mathrm{~d}, \mathfrak{m}$ ) Polish space with finite Borel measure is called m.m.s.
- $L^{2}$-Wasserstein distance between $\mu_{0}, \mu_{1} \in \mathcal{P}(X)$ :
$W_{2}\left(\mu_{0}, \mu_{1}\right):=\inf \left\{\left(\int_{X \times X} d^{2}(x, y) \pi(d x, d y)\right)^{\frac{1}{2}} ; \begin{array}{c}\pi \in \mathcal{P}(X \times X), \\ \pi_{0}=\mu_{0}, \pi_{1}=\mu_{1}\end{array}\right\} ;$
$W_{2}$ weakly metrizes $\mathcal{P}_{2}(X)$, yielding Polish ( $\left.\mathcal{P}_{2}(X), W_{2}\right)$.
- $(X, \mathrm{~d})$ is geodesic space iff $\left(\mathcal{P}_{2}(X), W_{2}\right)$ is geodesic space.
- Any geodesic $[0,1] \ni t \mapsto \mu_{t} \in \mathcal{P}_{2}(W)$ can be lifted to an Optimal Dynamical Plan $\nu \in \mathcal{P}(\operatorname{Geo}(X))$, so that $\left(\mathrm{e}_{t}\right)_{\sharp}(\nu)=\mu_{t}$, where:

$$
\text { (evaluation map) } \mathrm{e}_{t}: \operatorname{Geo}(X) \ni \gamma \mapsto \gamma_{t} \in X
$$

$\operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)=\operatorname{all}$ such $\nu$ 's with $\left(\mathrm{e}_{\mathrm{i}}\right)_{\sharp}(\nu)=\mu_{i}(i=0,1)$.

- $(X, \mathrm{~d})$ is called non-branching if geodesics do not branch at an interior-point into two separate geodesics.
( $X, \mathrm{~d}, \mathfrak{m}$ ) is called essentially non-branching (e.n.b.) if for any $\mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{a c}(X, \mathrm{~d}, \mathfrak{m})$, any $\nu$ is concentrated on non-branching subset $G \subset \operatorname{Geo}(X)$ (e.g. mGH limits of manifolds w/ Ric $\geq K$ ).


## Lott-Sturm-Villani Curvature-Dimension Condition

Definition (Sturm, Lott-Villani '04)
( $X, \mathrm{~d}, \mathfrak{m}$ ) satisfies $\mathrm{CD}(K, N), K \in \mathbb{R}, N \in[1, \infty]$ if
$\forall \mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{\text {ac }}(X, \mathrm{~d}, \mathfrak{m}), \exists \nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ s.t. $\forall N^{\prime} \geq N, \forall t \in(0,1)$ :
$\int \rho_{t}-\frac{1}{N^{\prime}} d \mu_{t} \geq \int\left(\tau_{K, N^{\prime}}^{(1-t)}(\ell(\gamma)) \rho_{0}-\frac{1}{N^{\prime}}\left(\gamma_{0}\right)+\tau_{K, N^{\prime}}^{(t)}(\ell(\gamma)) \rho_{1}-\frac{1}{N^{\prime}}\left(\gamma_{1}\right)\right) \nu(d \gamma)$,
where $\mu_{t}=\rho_{t} \mathfrak{m}\left(\mu_{t} \ll \mathfrak{m}\right.$ automatically since $\left.\mathfrak{m}(X)<\infty\right)$.
Definition: $(X, \mathrm{~d}, \mathfrak{m})$ satisfies $\mathrm{CD}_{\text {loc }}(K, N)$
if $\forall o \in X, \exists o \in X_{o} \subset X, \forall \mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{\text {ac }}(X, \mathrm{~d}, \mathfrak{m}), \operatorname{supp}\left(\mu_{i}\right) \subset X_{o}$, $\exists \nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ s.t. above holds $\forall N^{\prime} \geq N, \forall t \in(0,1)$.

Theorem (Alt. Definition of
for
m.m.s. (GRSCM))
$(X, d, m) \in C D$ ( $\nu$ unique and $\nu=S_{\sharp}\left(\mu_{0}\right)$ for $S: X \rightarrow \operatorname{Geo}(X)$ ), s.t. $\forall t \in(0,1)$
$\square$

## Lott-Sturm-Villani Curvature-Dimension Condition

## Definition (Sturm, Lott-Villani '04)

( $X, \mathrm{~d}, \mathfrak{m}$ ) satisfies $\mathrm{CD}(K, N), K \in \mathbb{R}, N \in[1, \infty]$ if
$\forall \mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{a c}(X, \mathrm{~d}, \mathfrak{m}), \exists \nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ s.t. $\forall N^{\prime} \geq N, \forall t \in(0,1)$ :

$$
\int \rho_{t}-\frac{1}{N^{\prime}} d \mu_{t} \geq \int\left(\tau_{K, N^{\prime}}^{(1-t)}(\ell(\gamma)) \rho_{0}-\frac{1}{N^{\prime}}\left(\gamma_{0}\right)+\tau_{K, N^{\prime}}^{(t)}(\ell(\gamma)) \rho_{1}-\frac{1}{N^{\prime}}\left(\gamma_{1}\right)\right) \nu(d \gamma)
$$

where $\mu_{t}=\rho_{t} \mathfrak{m}\left(\mu_{t} \ll \mathfrak{m}\right.$ automatically since $\left.\mathfrak{m}(X)<\infty\right)$.

## Definition: $(X, \mathrm{~d}, \mathfrak{m})$ satisfies $\mathrm{CD}_{\text {loo }}(K, N)$

if $\forall o \in X, \exists o \in X_{o} \subset X, \forall \mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{a c}(X, \mathrm{~d}, \mathfrak{m}), \operatorname{supp}\left(\mu_{i}\right) \subset X_{o}$, $\exists \nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ s.t. above holds $\forall N^{\prime} \geq N, \forall t \in(0,1)$.

## Theorem (Alt. Definition of $\mathrm{CD}(\mathrm{K}, \mathrm{N})$ for e.n.b. m.m.s. (GRSCM))

$(X, \mathrm{~d}, \mathfrak{m}) \in \mathrm{CD}(K, N)$ iff $\forall \mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{\mathrm{ac}}(X, \mathrm{~d}, \mathfrak{m}), \exists \nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$
( $\nu$ unique and $\nu=S_{\sharp}\left(\mu_{0}\right)$ for $S: X \rightarrow \operatorname{Geo}(X)$ ), s.t. $\forall t \in(0,1)$ :
$\rho_{t}{ }^{-\frac{1}{N}}\left(\gamma_{t}\right) \geq \tau_{K, N}^{(1-t)}(\ell(\gamma)) \rho_{0}-\frac{1}{N}\left(\gamma_{0}\right)+\tau_{K, N}^{(t)}(\ell(\gamma)) \rho_{1}-\frac{1}{N}\left(\gamma_{1}\right) \quad \forall \nu$-a.e. $\gamma \in \operatorname{Geo}(X)$.

## Distortion Coefficients $\sigma$ and $\tau$

The $C D(K, N)$ condition:

$$
\rho_{t}^{-\frac{1}{N}}\left(\gamma_{t}\right) \geq \tau_{K, N}^{(1-t)}(\ell(\gamma)) \rho_{0}^{-\frac{1}{N}}\left(\gamma_{0}\right)+\tau_{K, N}^{(t)}(\ell(\gamma)) \rho_{1}^{-\frac{1}{N}}\left(\gamma_{1}\right)
$$

entails " $\tau$-concavity" of $J_{\gamma}^{1}(t)$, where $J_{\gamma}(t)=\frac{\rho_{0}\left(\gamma_{0}\right)}{\rho_{t}\left(\gamma_{t}\right)}$ is the "Jacobian" of the transport map $T_{t}: x \mapsto \mathrm{e}_{t} \circ S(x)$ from $\gamma_{0}$ to $\gamma_{t}$. We have:
where coefficients $\sigma(t)=\sigma_{K, N-1}^{(t)}(\theta)$ and $t$ control volume distortion perpendicular and parallel to $\gamma$ (respectively).

in accordance with the smooth Riemannian setting (Jacobi equation).

## Distortion Coefficients $\sigma$ and $\tau$

The $C D(K, N)$ condition:

$$
\rho_{t}^{-\frac{1}{N}}\left(\gamma_{t}\right) \geq \tau_{K, N}^{(1-t)}(\ell(\gamma)) \rho_{0}^{-\frac{1}{N}}\left(\gamma_{0}\right)+\tau_{K, N}^{(t)}(\ell(\gamma)) \rho_{1}^{-\frac{1}{N}}\left(\gamma_{1}\right)
$$

entails " $\tau$-concavity" of $J_{\gamma}^{\frac{1}{N}}(t)$, where $J_{\gamma}(t)=\frac{\rho_{0}\left(\gamma_{0}\right)}{\rho_{t}\left(\gamma_{t}\right)}$ is the "Jacobian" of the transport map $T_{t}: x \mapsto \mathrm{e}_{t} \circ S(x)$ from $\gamma_{0}$ to $\gamma_{t}$. We have:

$$
\tau_{K, N}^{(t)}(\theta):=\sigma_{K, N-1}^{(t)}(\theta)^{1-\frac{1}{N} t^{\frac{1}{N}},}
$$

where coefficients $\sigma(t)=\sigma_{K, N-1}^{(t)}(\theta)$ and $t$ control volume distortion perpendicular and parallel to $\gamma$ (respectively).
in accordance with the smooth Riemannian setting (Jacobi equation).

## Distortion Coefficients $\sigma$ and $\tau$

The $\mathrm{CD}(K, N)$ condition:

$$
\rho_{t}^{-\frac{1}{N}}\left(\gamma_{t}\right) \geq \tau_{K, N}^{(1-t)}(\ell(\gamma)) \rho_{0}^{-\frac{1}{N}}\left(\gamma_{0}\right)+\tau_{K, N}^{(t)}(\ell(\gamma)) \rho_{1}^{-\frac{1}{N}}\left(\gamma_{1}\right)
$$

entails " $\tau$-concavity" of $J_{\gamma}^{\frac{1}{N}}(t)$, where $J_{\gamma}(t)=\frac{\rho_{0}\left(\gamma_{0}\right)}{\rho_{t}\left(\gamma_{t}\right)}$ is the "Jacobian" of the transport map $T_{t}: x \mapsto \mathrm{e}_{t} \circ S(x)$ from $\gamma_{0}$ to $\gamma_{t}$. We have:

$$
\tau_{K, N}^{(t)}(\theta):=\sigma_{K, N-1}^{(t)}(\theta)^{1-\frac{1}{N}} t^{\frac{1}{N}}
$$

where coefficients $\sigma(t)=\sigma_{K, N-1}^{(t)}(\theta)$ and $t$ control volume distortion perpendicular and parallel to $\gamma$ (respectively).
$\sigma^{\prime \prime}(t)+\theta^{2} \frac{K}{N-1} \sigma(t)=0, \begin{aligned} & \sigma(0)=0 \\ & \sigma(1)=1\end{aligned} \Rightarrow \sigma_{K, N-1}^{(t)}(\theta):=\frac{\sin \left(t \theta \sqrt{\frac{K}{N-1}}\right)}{\sin \left(\theta \sqrt{\frac{K}{N-1}}\right)}$,
in accordance with the smooth Riemannian setting (Jacobi equation).

## Examples of m.m.s.'s satisfying $\mathrm{CD}(\mathrm{K}, \mathrm{N})$

Remark: $\mathrm{CD}(K, N) \Rightarrow(\operatorname{supp}(\mathfrak{m}), d)$ is geodesic if $N<\infty$.

- ( $\left.M^{n}, g, V_{o l}^{g}\right)$ geodesically-convex,
- $\left(M^{n}, g, \rho \mathrm{Vol}_{g}\right)$ geodesically-convex,

- Finsler manifolds satisfy $\operatorname{CD}(0, n)$.
- Alexandrov spaces satisfy CD(0. $n$ )
- Stable under mGH limits.
- $C D(K, N)$ implies numerous geometric and analytic inequalities as in smooth setting.

Bakry-Émery, Cordero-Erausquin-McCann-Schmuckenshläger, Otto-Villani,
von-Renesse-Sturm. Ohta. Petrunin. Lott-Sturm-Villani, Cavalletti-Mondino.

## Examples of m.m.s.'s satisfying $\mathrm{CD}(\mathrm{K}, \mathrm{N})$

Remark: $\mathrm{CD}(K, N) \Rightarrow(\operatorname{supp}(\mathfrak{m}), d)$ is geodesic if $N<\infty$.

- ( $\left.M^{n}, g, V o l_{g}\right)$ geodesically-convex,

$$
\operatorname{Ric}_{g} \geq K \Leftrightarrow \mathrm{CD}(K, n) .
$$

- ( $\left.M^{n}, g, \rho \mathrm{Vol}_{g}\right)$ geodesically-convex,

$$
\operatorname{Ric}_{g}-\operatorname{Hess}_{g} \log \rho-\frac{1}{N-n} \nabla_{g} \log \rho \otimes \nabla_{g} \log \rho \geq K \Leftrightarrow \mathrm{CD}(K, N) .
$$

- Finsler manifolds satisfy $C D(0, n)$.
- Alexandrov spaces satisfy $C D(0, n)$.
- Stable under mGH limits.
- $C D(K, N)$ implies numerous geometric and analytic inequalities as in smooth setting.

Bakry-Émery, Cordero-Erausquin-McCann-Schmuckenshläger, Otto-Villani, von-Renesse-Sturm, Ohta, Petrunin, Lott-Sturm-Villani, Cavalletti-Mondino.

## Local-to-Global Question

Globalization Question (Sturm, Villani)
Let $(X, \mathrm{~d}, \mathfrak{m})$ and assume $(\operatorname{supp}(\mathfrak{m}), \mathrm{d})$ is geodesic (or length space). Does $\mathrm{CD}_{\text {loc }}(K, N) \Rightarrow \mathrm{CD}(K, N)$ ? (as in the smooth setting)

> Yes for non-branching spaces if $N=\infty$ (Sturm) or $K=0$ (Villani).
> No in general (Rajala): $\exists$ heavily branching $C D_{\text {loc }}(0,4)$ space which is not $\mathrm{CD}(K, N)$ for any $K \in \mathbb{R}$ and $N \in[1, \infty]$.
> So restriction to non-branching, or more generally, e.n.b., is natural.

## Main Result (Cavalletti-M. '16)

$\square$
Remark: new even assuming infinitesimal Hilbertianity ( $\mathrm{RCD}(\mathrm{K}, N)$ ),
e.g. for $m G H$ limits of $C D(K, N)$ Riemannian manifolds.

## Local-to-Global Question

Globalization Question (Sturm, Villani)
Let $(X, \mathrm{~d}, \mathfrak{m})$ and assume $(\operatorname{supp}(\mathfrak{m}), \mathrm{d})$ is geodesic (or length space). Does $\mathrm{CD}_{\text {loc }}(K, N) \Rightarrow \mathrm{CD}(K, N)$ ? (as in the smooth setting)

Yes for non-branching spaces if $N=\infty$ (Sturm) or $K=0$ (Villani).

> No in general (Rajala): $\exists$ heavily branching $C D_{\text {loc }}(0,4)$ space which is not $\mathrm{CD}(K, N)$ for any $K \in \mathbb{R}$ and $N \in[1, \infty]$.
> So restriction to non-branching, or more generally, e.n.b., is natural.

## Main Result (Cavalletti-M. '16)

Yes for all $K \in \mathbb{R}$ and $N \in(1, \infty)$ if $m(X)<\infty$ and $(X, d, m)$ is e.n.b.
Remark: new even assuming infinitesimal Hilbertianity $(\operatorname{RCD}(K, N))$
e.g. for mGH limits of $\mathrm{CD}(K, N)$ Riemannian manifolds.

## Local-to-Global Question

## Globalization Question (Sturm, Villani)

Let $(X, \mathrm{~d}, \mathfrak{m})$ and assume $(\operatorname{supp}(\mathfrak{m}), \mathrm{d})$ is geodesic (or length space). Does $\mathrm{CD}_{\text {loc }}(K, N) \Rightarrow \mathrm{CD}(K, N)$ ? (as in the smooth setting)

Yes for non-branching spaces if $N=\infty$ (Sturm) or $K=0$ (Villani).
No in general (Rajala): $\exists$ heavily branching $\mathrm{CD}_{\text {loc }}(0,4)$ space which is not $\mathrm{CD}(K, N)$ for any $K \in \mathbb{R}$ and $N \in[1, \infty]$.
So restriction to non-branching, or more generally, e.n.b., is natural.
Main Result (Cavalletti-M. '16)
Yes for all $K \in \mathbb{R}$ and $N \in(1, \infty)$ i $m(X)<\infty$ and $(X, d, m)$ is e.n.b
Remark: new even assuming infinitesimal Hilbertianity (RCD(K, N) )
e.g. for mGH limits of $\mathrm{CD}(K, N)$ Riemannian manifolds.

## Local-to-Global Question

## Globalization Question (Sturm, Villani)

Let $(X, \mathrm{~d}, \mathfrak{m})$ and assume $(\operatorname{supp}(\mathfrak{m}), \mathrm{d})$ is geodesic (or length space). Does $\mathrm{CD}_{\text {loc }}(K, N) \Rightarrow \mathrm{CD}(K, N)$ ? (as in the smooth setting)

Yes for non-branching spaces if $N=\infty$ (Sturm) or $K=0$ (Villani).
No in general (Rajala): $\exists$ heavily branching $\mathrm{CD}_{\text {loc }}(0,4)$ space which is not $\mathrm{CD}(K, N)$ for any $K \in \mathbb{R}$ and $N \in[1, \infty]$.
So restriction to non-branching, or more generally, e.n.b., is natural.

## Main Result (Cavalletti-M. '16)

Yes for all $K \in \mathbb{R}$ and $N \in(1, \infty)$ if $\mathfrak{m}(X)<\infty$ and $(X, \mathrm{~d}, \mathfrak{m})$ is e.n.b.
Remark: new even assuming infinitesimal Hilbertianity $(\operatorname{RCD}(K, N)$ ), e.g. for mGH limits of $\mathrm{CD}(K, N)$ Riemannian manifolds.

## The Challenge

Given a fixed $W^{2}$-geodesic $t \mapsto\left(\mathrm{e}_{t}\right)_{\sharp}(\nu), \mathrm{CD}_{100}(K, N)$ implies for $\nu$-a.e. $\gamma \in \operatorname{Geo}(X)$ (setting as usual $\left.J_{\gamma}(t)=\frac{1}{\rho_{t}\left(\gamma_{t}\right)}\right)$ :
$\int_{\gamma}^{\frac{1}{\nu}}\left((1-t) \alpha_{0}+t \alpha_{1}\right) \geq \tau_{K, N}^{(t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{N}}\left(\alpha_{1}\right)+\tau_{K, N}^{(1-t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{\nu}}\left(\alpha_{0}\right) \quad \forall t \in[0,1]$, for all $\left[\alpha_{0}, \alpha_{1}\right] \subset[0,1]$ with $\alpha_{1}-\alpha_{0}$ sufficiently small.

Previously known cases $\frac{K}{N}=0 \Rightarrow \tau_{K, N}^{(t)}=t$ linear distortion, and so local $t$-concavity implies global $t$-concavity for $\left[\alpha_{0}, \alpha_{1}\right]=[0,1]$.

However, when $\frac{K}{N} \neq 0$, Deng-Sturm constructed a counterexample to local-to-global property of $\tau_{K, N}^{(t)}$-concavity.

Moral: the local-to-global property for $\frac{K}{N} \neq 0$, if true, cannot be obtained by a one-dimensional bootstrap argument on a single $W_{2}$-geodesic as above, and must follow from a stronger reason involving a family of $W_{2}$-geodesics simultaneously.

## The Challenge

Given a fixed $W^{2}$-geodesic $t \mapsto\left(\mathrm{e}_{t}\right)_{\sharp}(\nu), \mathrm{CD}_{10 c}(K, N)$ implies for $\nu$-a.e.
$\gamma \in \operatorname{Geo}(X)$ (setting as usual $\left.J_{\gamma}(t)=\frac{1}{\rho_{t}\left(\gamma_{t}\right)}\right)$ :
$\int_{\gamma}^{\frac{1}{\nu}}\left((1-t) \alpha_{0}+t \alpha_{1}\right) \geq \tau_{K, N}^{(t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{\lambda}}\left(\alpha_{1}\right)+\tau_{K, N}^{(1-t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{N}}\left(\alpha_{0}\right) \quad \forall t \in[0,1]$, for all $\left[\alpha_{0}, \alpha_{1}\right] \subset[0,1]$ with $\alpha_{1}-\alpha_{0}$ sufficiently small.

Previously known cases $\frac{K}{N}=0 \Rightarrow \tau_{K, N}^{(t)}=t$ linear distortion, and so local $t$-concavity implies global $t$-concavity for $\left[\alpha_{0}, \alpha_{1}\right]=[0,1]$.
However, when $\frac{K}{N} \neq 0$, Deng-Sturm constructed a counterexample to local-to-global property of $\tau_{K, N}^{(t)}{ }^{-}$-concavity.

Moral: the local-to-global property for $\frac{K}{N} \neq 0$, if true, cannot be obtained by a one-dimensional bootstrap argument on a single $W_{2}$-geodesic as above, and must follow from a stronger reason involving a family of $W_{2}$-geodesics simultaneously.

## The Challenge

Deng-Sturm: local-to-global for $\tau_{K, N}^{(t)}(\theta)$-concavity is false for $\frac{K}{N} \neq 0$. However, Bacher-Sturm:

- Defined $\operatorname{CD}^{*}(K, N)$ by replacing $\tau_{K, N}^{(t)}(\theta)$ by weaker $\sigma_{K, N}^{(t)}(\theta)$ :

$$
J_{\gamma}^{\frac{1}{\mathcal{N}}}\left((1-t) \alpha_{0}+t \alpha_{1}\right) \geq \sigma_{K, N}^{(t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{\mathcal{N}}}\left(\alpha_{1}\right)+\sigma_{K, N}^{(1-t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{N}}\left(\alpha_{0}\right) \quad \forall t \in[0,1] .
$$

Now local-to-global for $\sigma_{K, N}^{(t)}(\theta)$-concavity is always true since:

$$
\sigma^{\prime \prime}(t)+\theta^{2} \frac{K}{N} \sigma(t)=0 \Rightarrow\left(J_{\gamma}^{\frac{1}{N}}\right)^{\prime \prime}+\theta^{2} \frac{K}{N} J_{\gamma}^{\frac{1}{N}} \leq 0 \text { on }\left[\alpha_{0}, \alpha_{1}\right] .
$$

- For non-branching spaces, established local-to-global property: $\mathrm{CD}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}(K-\varepsilon, N) \forall \varepsilon>0$.
Local-to-global challenge for $\operatorname{CD}(K, N)$ : Disentangle $\sigma(\perp)$ and $t(|\mid)$ contributions to Jacobian before integrating as above.


## The Challenge

Deng-Sturm: local-to-global for $\tau_{K, N}^{(t)}(\theta)$-concavity is false for $\frac{K}{N} \neq 0$. However, Bacher-Sturm:

- Defined $\operatorname{CD}^{*}(K, N)$ by replacing $\tau_{K, N}^{(t)}(\theta)$ by weaker $\sigma_{K, N}^{(t)}(\theta)$ :

$$
J_{\gamma}^{\frac{1}{\mathcal{N}}}\left((1-t) \alpha_{0}+t \alpha_{1}\right) \geq \sigma_{K, N}^{(t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{\mathcal{N}}}\left(\alpha_{1}\right)+\sigma_{K, N}^{(1-t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{N}}\left(\alpha_{0}\right) \quad \forall t \in[0,1] .
$$

Now local-to-global for $\sigma_{K, N}^{(t)}(\theta)$-concavity is always true since:

$$
\sigma^{\prime \prime}(t)+\theta^{2} \frac{K}{N} \sigma(t)=0 \Rightarrow\left(J_{\gamma}^{\frac{1}{N}}\right)^{\prime \prime}+\theta^{2} \frac{K}{N} J_{\gamma}^{\frac{1}{N}} \leq 0 \text { on }\left[\alpha_{0}, \alpha_{1}\right] .
$$

- For non-branching spaces, established local-to-global property: $C D^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}(K-\varepsilon, N) \forall \varepsilon>0$.
Local-to-global challenge for $\operatorname{CD}(K, N)$ : Disentangle $\sigma(\perp)$ and $t(\|)$ contributions to Jacobian before integrating as above.

We will show:


## The Challenge

Deng-Sturm: local-to-global for $\tau_{K, N}^{(t)}(\theta)$-concavity is false for $\frac{K}{N} \neq 0$. However, Bacher-Sturm:

- Defined $\operatorname{CD}^{*}(K, N)$ by replacing $\tau_{K, N}^{(t)}(\theta)$ by weaker $\sigma_{K, N}^{(t)}(\theta)$ :

$$
J_{\gamma}^{\frac{1}{\mathcal{N}}}\left((1-t) \alpha_{0}+t \alpha_{1}\right) \geq \sigma_{K, N}^{(t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{\lambda}}\left(\alpha_{1}\right)+\sigma_{K, N}^{(1-t)}\left(\left|\alpha_{1}-\alpha_{0}\right| \theta\right) J_{\gamma}^{\frac{1}{N}}\left(\alpha_{0}\right) \quad \forall t \in[0,1] .
$$

Now local-to-global for $\sigma_{K, N}^{(t)}(\theta)$-concavity is always true since:

$$
\sigma^{\prime \prime}(t)+\theta^{2} \frac{K}{N} \sigma(t)=0 \Rightarrow\left(J_{\gamma}^{\frac{1}{N}}\right)^{\prime \prime}+\theta^{2} \frac{K}{N} J_{\gamma}^{\frac{1}{N}} \leq 0 \text { on }\left[\alpha_{0}, \alpha_{1}\right] .
$$

- For non-branching spaces, established local-to-global property: $C D^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}(K-\varepsilon, N) \forall \varepsilon>0$.
Local-to-global challenge for $\operatorname{CD}(K, N)$ : Disentangle $\sigma(\perp)$ and $t(\|)$ contributions to Jacobian before integrating as above.
We will show: $J_{\gamma}(t)=L_{\gamma}(t) Y_{\gamma}(t), L_{\gamma}$ concave, $Y_{\gamma}^{\frac{1}{N-1}} \sigma_{K, N-1}^{(t)}$-concave. Then $\tau_{K, N}^{(t)}$-concavity of $J_{\gamma}^{\frac{1}{N}}$ follows by application of Hölder's inq.


## $L^{1}$ Optimal-Transport and $\mathrm{CD}^{1}(K, N)$

$L^{1}$-Wasserstein distance, Monge-Kantorovich-Rubinstein duality:

$$
W_{1}\left(\mu_{0}, \mu_{1}\right)=\inf _{\pi} \int_{X \times X} \mathrm{~d}(x, y) \pi(d x, d y)=\sup _{u 1-\operatorname{Lipschitz}} \int_{X} u\left(d \mu_{0}-d \mu_{1}\right)
$$

Fix a 1-Lipschitz $u:(X, d) \rightarrow \mathbb{R}$. Assume for simplicity $\operatorname{supp}(m)=X$.


[^0]
## $L^{1}$ Optimal-Transport and $\mathrm{CD}^{1}(K, N)$

$L^{1}$-Wasserstein distance, Monge-Kantorovich-Rubinstein duality:

$$
W_{1}\left(\mu_{0}, \mu_{1}\right)=\inf _{\pi} \int_{X \times X} \mathrm{~d}(x, y) \pi(d x, d y)=\sup _{u 1-\operatorname{Lipschitz}} \int_{X} u\left(d \mu_{0}-d \mu_{1}\right)
$$

Fix a 1-Lipschitz $u:(X, d) \rightarrow \mathbb{R}$. Assume for simplicity $\operatorname{supp}(\mathfrak{m})=X$.

- $R \subset X$ is called a transport-ray for $u$ if $R=\operatorname{Im}(\gamma), \gamma$ closed geodesic $(\ell(\gamma) \in(0, \infty]),\left|u\left(\gamma_{t}\right)-u\left(\gamma_{s}\right)\right|=\mathbf{d}\left(\gamma_{t}, \gamma_{s}\right)$, and $R$ is maximal w.r.t. inclusion.
- $(X, \mathrm{~d}, \mathfrak{m})$ satisfies $\mathrm{CD}_{u}^{1}(K, N)$ if $\exists\left\{X_{\alpha}\right\}_{\alpha \in Q} \subset X$ s.t.:
- $\mathfrak{m}\left\llcorner\mathcal{T}_{u}=\int_{Q} \mathfrak{m}_{\alpha} \mathfrak{q}(d \alpha)\right.$, with $\mathfrak{m}_{\alpha}\left(X_{\alpha}\right)=1$, for $\mathfrak{q}$-a.e. $\alpha \in Q$, where $\mathcal{T}_{u}=\{x \in X ; \exists y \neq x|u(x)-u(y)|=\mathrm{d}(x, y)\}$.
- For $\mathfrak{q}$-a.e. $\alpha \in Q, \operatorname{supp}\left(\mathfrak{m}_{\alpha}\right)=X_{\alpha}$.
- For q-a.e. $\alpha \in Q, X_{\alpha}$ is a transport-ray for $u$.
- For $\mathfrak{q}$-a.e. $\alpha \in Q$, one-dimensional $\left(X_{\alpha}, \mathrm{d}, \mathfrak{m}_{\alpha}\right) \in \mathrm{CD}(K, N)$ (" $C D(K, N)$ density $Y_{\alpha}$ ", i.e. $Y_{\alpha}^{\frac{1}{N-1}}$ is $\sigma_{K, N-1}$-concave).
- $(X, \mathrm{~d}, \mathfrak{m})$ satisfies $\mathrm{CD}_{\text {Lip }}^{1}(K, N)$ if $\mathrm{CD}_{u}^{1}(K, N) \forall 1$-Lipschitz $u$.


## $\mathrm{CD}(K, N) \Rightarrow \mathrm{CD}_{L i p}^{1}(K, N)$

$L^{1}$-OT studied by Evans-Gangbo, Feldman-McCann, Ambrosio, etc..., but the relation between $C D$ and the new $C D_{L i p}^{1}$ is recent.
Key milestones, modulo new features in red:

- Heintze-Karcher '78: on $\left(M^{n}, g, \mathrm{Vol}_{g}\right), \mathrm{CD}(K, n) \Rightarrow \mathrm{CD}_{u}^{1}(K, n)$ for all $u=\mathrm{d}(\cdot, H), H$ is smooth oriented hypersurface.
- Generalized Heintze-Karcher (Bayle '04, Morgan '05): on $\left(M^{n}, g, \rho \operatorname{Vol}_{g}\right), \mathrm{CD}(K, N) \Rightarrow \mathrm{CD}_{u}^{1}(K, N)$.
- Klartag '14: on $\left(M^{n}, g, \mathfrak{m}=\rho \operatorname{Vol}_{g}\right), \mathrm{CD}(K, N) \Rightarrow \mathrm{CD}_{\mathrm{Lip}}^{1}(K, N)$; No smoothness assumed on 1-Lipschitz $u$ !
- Given $\int f d \mathfrak{m}=0$, Klartag applied this to maximizing $u$ in $W_{1}\left(f_{+} \mathfrak{m}, f_{-} \mathfrak{m}\right)$, obtaining a 1-D "localization" with $\int_{X_{\alpha}} f d \mathfrak{m}_{\alpha}=0$; previously known for $M^{n}=\mathbb{R}^{n}$ using bisection method of Payne-Weinberger, Gromov-Milman, Kannan-Lovász-Simonovits.
- Cavalletti-Mondino '15: on e.n.b. ( $X, \mathrm{~d}, \mathfrak{m}$ ), $\mathfrak{m}(X)<\infty, N<\infty$, geodesic, $\mathrm{CD}_{\text {loc }}(K, N) \Rightarrow \mathrm{CD}_{\text {Lip }}^{1}(K, N)$. Remark: $\mathrm{CD}_{\text {loc }}$ is enough since in 1-D, $\mathrm{CD}_{\text {loc }}(K, N) \Rightarrow \mathrm{CD}(K, N)$ easily.

Our plan: $\mathrm{CD}_{\text {loc }}(K, N)+$ geodesic $\Rightarrow$ Cav-Mon $\mathrm{CD}_{L i p}^{1}(K, N) \Rightarrow$ ? $\mathrm{CD}(K, N)$.

## Theorem (Cavalleti-M. '16)

( $X, \mathrm{~d}, \mathfrak{m}$ ) e.n.b., $\mathfrak{m}(X)<\infty, K \in \mathbb{R}, N \in(1, \infty)$. TFAE:

- CD $(K, N)$.
- $C D_{L p}^{1}(K, N)$.
- $\mathrm{CD}^{1}(K, N)$ (only need $u(x)=\operatorname{sgn}(f(x))$ dist $(x,\{f=0\})$ ).
- CD ${ }^{*}(K, N)$ (Bacher-Sturm, recall $C D_{\text {loc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}(K-, N)$ ).
- $C^{e}(K, N)$ (Erbar-Kuwada-Sturm).

If in addition (supp( $\mathfrak{m}$ ), d) is length-space, these are equivalent to:

- $\mathrm{CD}_{\text {Ioc }}(K, N)$.

Starting point for showing $\mathrm{CD}^{1} \Rightarrow \mathrm{CD}$ :

- $\mathrm{CD}_{\mathrm{d}(\cdot, 0)}^{1}(K, N) \Rightarrow \operatorname{MCP}(K, N)\left(0 \in X_{\alpha}\right.$ by maximality $) \Rightarrow$ proper.
- Cavalletti-Mondino: $\operatorname{MCP}(K, N)+$ e.n.b. $\Rightarrow W^{2}$ transport induced by map, hence $\nu$ unique, $\mu_{t} \ll \mathrm{~m}, \rho_{t}\left(\gamma_{t}\right)$ locally Lipschitz.

Our plan: $\mathrm{CD}_{\text {Ioc }}(K, N)+$ geodesic $\Rightarrow$ Cav-Mon $\mathrm{CD}_{L i p}^{1}(K, N) \Rightarrow$ ? $\mathrm{CD}(K, N)$.

## Theorem (Cavalletti-M. '16)

( $X, \mathrm{~d}, \mathfrak{m}$ ) e.n.b., $\mathfrak{m}(X)<\infty, K \in \mathbb{R}, N \in(1, \infty)$. TFAE:

- CD $(K, N)$.
- $\mathrm{CD}_{\mathrm{Lip}}^{1}(K, N)$.
- $\mathrm{CD}^{1}(K, N)$ (only need $u(x)=\operatorname{sgn}(f(x)) \operatorname{dist}(x,\{f=0\})$ ).
- $\mathrm{CD}^{*}(K, N)$ (Bacher-Sturm, recall $\mathrm{CD}_{\text {Ioc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {Ioc }}(K-, N)$ ).
- $\mathrm{CD}^{e}(K, N)$ (Erbar-Kuwada-Sturm).

If in addition ( $\operatorname{supp}(\mathrm{m}), \mathrm{d})$ is length-space, these are equivalent to:

Starting point for showing $\mathrm{CD}^{1} \Rightarrow \mathrm{CD}$ :

- $\mathrm{CD}_{\mathrm{d}(., 0)}^{1}(K, N) \Rightarrow \operatorname{MCP}(K, N)\left(o \in X_{\alpha}\right.$ by maximality $) \Rightarrow$ proper.
- Cavalletti-Mondino: $\operatorname{MCP}(K, N)+$ e.n.b. $\Rightarrow W^{2}$ transport
induced by map, hence $\nu$ unique, $\mu_{t} \ll m$, $\rho_{t}\left(\gamma_{t}\right)$ locally Lipschitz.

Our plan: $\mathrm{CD}_{\text {Ioc }}(K, N)+$ geodesic $\Rightarrow$ Cav-Mon $\mathrm{CD}_{L i p}^{1}(K, N) \Rightarrow$ ? $\mathrm{CD}(K, N)$.

## Theorem (Cavalletti-M. '16)

( $X, \mathrm{~d}, \mathfrak{m}$ ) e.n.b., $\mathfrak{m}(X)<\infty, K \in \mathbb{R}, N \in(1, \infty)$. TFAE:

- CD $(K, N)$.
- $\mathrm{CD}_{\text {Lip }}^{1}(K, N)$.
- $\mathrm{CD}^{1}(K, N)$ (only need $u(x)=\operatorname{sgn}(f(x))$ dist $(x,\{f=0\})$ ).
- $\mathrm{CD}^{*}(K, N)$ (Bacher-Sturm, recall $\mathrm{CD}_{\text {loc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}(K-, N)$ ).
- $\mathrm{CD}^{e}(K, N)$ (Erbar-Kuwada-Sturm).

If in addition (supp(m), d) is length-space, these are equivalent to:

Starting point for showing $\mathrm{CD}^{1} \Rightarrow \mathrm{CD}$

- $\mathrm{CD}_{\mathrm{d}(., 0)}^{1}(K, N) \Rightarrow \operatorname{MCP}(K, N)\left(0 \in X_{\alpha}\right.$ by maximality $) \Rightarrow$ proper.
- Cavalletti-Mondino: $\operatorname{MCP}(K, N)+$ e.n.b. $\Rightarrow W^{2}$ transport
induced by map, hence $\nu$ unique, $\mu_{t} \ll m$, $\rho_{t}\left(\gamma_{t}\right)$ locally Lipschitz.

Our plan: $\mathrm{CD}_{\text {Ioc }}(K, N)+$ geodesic $\Rightarrow$ Cav-Mon $\mathrm{CD}_{L i p}^{1}(K, N) \Rightarrow$ ? $\mathrm{CD}(K, N)$.

## Theorem (Cavalletti-M. '16)

( $X, \mathrm{~d}, \mathfrak{m}$ ) e.n.b., $\mathfrak{m}(X)<\infty, K \in \mathbb{R}, N \in(1, \infty)$. TFAE:

- CD $(K, N)$.
- $\mathrm{CD}_{\mathrm{Lip}}^{1}(K, N)$.
- $\mathrm{CD}^{1}(K, N)$ (only need $u(x)=\operatorname{sgn}(f(x))$ dist $(x,\{f=0\})$ ).
- $\mathrm{CD}^{*}(K, N)$ (Bacher-Sturm, recall $\mathrm{CD}_{\text {loc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}(K-, N)$ ).
- $\mathrm{CD}^{e}(K, N)$ (Erbar-Kuwada-Sturm).

If in addition ( $\operatorname{supp}(\mathfrak{m}), \mathrm{d})$ is length-space, these are equivalent to:

- $\mathrm{CD}_{\text {Ioc }}(K, N)$.


Our plan: $\mathrm{CD}_{\text {loc }}(K, N)+$ geodesic $\Rightarrow$ Cav-Mon $\mathrm{CD}_{\text {Lip }}^{1}(K, N) \Rightarrow{ }_{\text {? }} \mathrm{CD}(K, N)$.

## Theorem (Cavalletti-M. '16)

$(X, \mathrm{~d}, \mathfrak{m})$ e.n.b., $\mathfrak{m}(X)<\infty, K \in \mathbb{R}, N \in(1, \infty)$. TFAE:

- $C D(K, N)$.
- $\mathrm{CD}_{\text {Lip }}^{1}(K, N)$.
- $\mathrm{CD}^{1}(K, N)$ (only need $u(x)=\operatorname{sgn}(f(x)) \operatorname{dist}(x,\{f=0\})$ ).
- $\mathrm{CD}^{*}(K, N)$ (Bacher-Sturm, recall $\mathrm{CD}_{\text {loc }}^{*}(K, N) \Leftrightarrow \mathrm{CD}_{\text {loc }}(K-, N)$ ).
- $\mathrm{CD}^{e}(K, N)$ (Erbar-Kuwada-Sturm).

If in addition $(\operatorname{supp}(\mathfrak{m}), \mathrm{d})$ is length-space, these are equivalent to:

- $\mathrm{CD}_{\text {loc }}(K, N)$.

Starting point for showing $\mathrm{CD}^{1} \Rightarrow \mathrm{CD}$ :

- $\mathrm{CD}_{\mathrm{d}(\cdot,))}^{1}(K, N) \Rightarrow \operatorname{MCP}(K, N)\left(o \in X_{\alpha}\right.$ by maximality $) \Rightarrow$ proper.
- Cavalletti-Mondino: $\operatorname{MCP}(K, N)+$ e.n.b. $\Rightarrow W^{2}$ transport induced by map, hence $\nu$ unique, $\mu_{t} \ll \mathfrak{m}, \rho_{t}\left(\gamma_{t}\right)$ locally Lipschitz.


## Proof - Preliminaries

$$
W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)=\inf _{\pi} \int_{X \times X} \mathrm{~d}^{2}(x, y) \pi(d x, d y)=\sup _{\varphi} \int_{X} \varphi(x) \mu_{0}(d x)+\int_{X} \varphi^{c}(y) \mu_{1}(d y)
$$

where $\varphi^{c}(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2}-\varphi(x)$ is the Kantorovich dual.
$W_{2}\left(\mu_{0}, \mu_{1}\right)<\infty \Rightarrow$ sup attained on $\varphi=\left(\varphi^{c}\right)^{c}$, "Kantorovich potential".
Any $\nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ concentrated on "Kantorovich geodesics":
$G_{\varphi}=\left\{\gamma \in \operatorname{Geo}(X) ; \varphi\left(\gamma_{0}\right)+\varphi^{c}\left(\gamma_{1}\right)=\ell(\gamma)^{2} / 2\right\}$

Hopf-Lax semi-group: $Q_{t} f(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2 t}+f(x)$.
Interpolating potentials: $\varphi_{0}=\varphi, \varphi_{1}=-\varphi^{c},-\varphi_{t}=Q_{t}(-\varphi), t \in[0,1]$. $\Rightarrow(t-s) \varphi_{s}$ is Kantorovich potential for $\left(\mu_{s}, \mu_{t}\right)$.

Formally: $\mu_{1}=(\exp (-\nabla \varphi))_{\sharp} \mu_{0} ; \mu_{t}=\left(\exp \left(-(t-s) \nabla \varphi_{s}\right)\right)_{\sharp} \mu_{s}$.

Hamilton-Jacobi: $\frac{d}{d t} \varphi_{t}=\frac{1}{2}\left|\nabla \varphi_{t}\right|^{2}$ (rigorously $=\frac{1}{2} \ell_{t}^{2}$ on $\left.D_{\ell}\right)$.
On $\mathrm{e}_{t}\left(G_{\varphi}\right), \ell_{t}\left(\gamma_{t}\right)=\ell(\gamma)$ is well-defined if $(X, \mathrm{~d})$ is geodesic \& proper.

## Proof - Preliminaries

$$
W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)=\inf _{\pi} \int_{X \times X} d^{2}(x, y) \pi(d x, d y)=\sup _{\varphi} \int_{X} \varphi(x) \mu_{0}(d x)+\int_{X} \varphi^{c}(y) \mu_{1}(d y)
$$

where $\varphi^{c}(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2}-\varphi(x)$ is the Kantorovich dual. $W_{2}\left(\mu_{0}, \mu_{1}\right)<\infty \Rightarrow$ sup attained on $\varphi=\left(\varphi^{c}\right)^{c}$, "Kantorovich potential".

Any $\nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ concentrated on "Kantorovich geodesics":

$$
G_{\varphi}=\left\{\gamma \in \operatorname{Geo}(X) ; \varphi\left(\gamma_{0}\right)+\varphi^{c}\left(\gamma_{1}\right)=\ell(\gamma)^{2} / 2\right\} .
$$

Hopf-Lax semi-group: $Q_{t} f(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2 t}+f(x)$.
Interpolating potentials: $\varphi_{0}=\varphi, \varphi_{1}=-\varphi^{c},-\varphi_{t}=Q_{t}(-\varphi), t \in[0,1]$. $\Rightarrow(t-s) \varphi_{s}$ is Kantorovich potential for $\left(\mu_{s}, \mu_{t}\right)$.

Formally: $\mu_{1}=(\exp (-\nabla \varphi))_{\sharp} \mu_{0} ; \mu_{t}=\left(\exp \left(-(t-s) \nabla \varphi_{s}\right)\right)_{\sharp} \mu_{s}$.
Hamilton-Jacobi: $\left.\frac{d}{d t} \varphi_{t}=\frac{1}{2} \right\rvert\, \nabla \varphi_{t}{ }^{2}$ (rigorously $=\frac{1}{2} \ell_{t}^{2}$ on $\left.D_{\ell}\right)$.
On $\mathrm{e}_{t}\left(G_{\varphi}\right), \ell_{t}\left(\gamma_{t}\right)=\ell(\gamma)$ is well-defined if $(X, \mathrm{~d})$ is geodesic \& proper.

## Proof - Preliminaries

$$
W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)=\inf _{\pi} \int_{X \times X} d^{2}(x, y) \pi(d x, d y)=\sup _{\varphi} \int_{X} \varphi(x) \mu_{0}(d x)+\int_{X} \varphi^{c}(y) \mu_{1}(d y)
$$

where $\varphi^{c}(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2}-\varphi(x)$ is the Kantorovich dual. $W_{2}\left(\mu_{0}, \mu_{1}\right)<\infty \Rightarrow \sup$ attained on $\varphi=\left(\varphi^{c}\right)^{c}$, "Kantorovich potential".
Any $\nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ concentrated on "Kantorovich geodesics":

$$
G_{\varphi}=\left\{\gamma \in \operatorname{Geo}(X) ; \varphi\left(\gamma_{0}\right)+\varphi^{c}\left(\gamma_{1}\right)=\ell(\gamma)^{2} / 2\right\} .
$$

Hopf-Lax semi-group: $Q_{t} f(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2 t}+f(x)$.
Interpolating potentials: $\varphi_{0}=\varphi, \varphi_{1}=-\varphi^{c},-\varphi_{t}=Q_{t}(-\varphi), t \in[0,1]$.
$\Rightarrow(t-s) \varphi_{s}$ is Kantorovich potential for $\left(\mu_{s}, \mu_{t}\right)$.
Formally:


On $\mathrm{e}_{t}\left(G_{\varphi}\right)$,
is well-defined if $(X, \mathrm{~d})$ is geodesic \& proper.

## Proof - Preliminaries

$$
W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)=\inf _{\pi} \int_{X \times X} d^{2}(x, y) \pi(d x, d y)=\sup _{\varphi} \int_{X} \varphi(x) \mu_{0}(d x)+\int_{X} \varphi^{c}(y) \mu_{1}(d y),
$$

where $\varphi^{c}(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2}-\varphi(x)$ is the Kantorovich dual. $W_{2}\left(\mu_{0}, \mu_{1}\right)<\infty \Rightarrow \sup$ attained on $\varphi=\left(\varphi^{c}\right)^{c}$, "Kantorovich potential".
Any $\nu \in \operatorname{OptGeo}\left(\mu_{0}, \mu_{1}\right)$ concentrated on "Kantorovich geodesics":

$$
G_{\varphi}=\left\{\gamma \in \operatorname{Geo}(X) ; \varphi\left(\gamma_{0}\right)+\varphi^{c}\left(\gamma_{1}\right)=\ell(\gamma)^{2} / 2\right\} .
$$

Hopf-Lax semi-group: $Q_{t} f(y)=\inf _{x \in X} \frac{\mathrm{~d}(x, y)^{2}}{2 t}+f(x)$.
Interpolating potentials: $\varphi_{0}=\varphi, \varphi_{1}=-\varphi^{c},-\varphi_{t}=Q_{t}(-\varphi), t \in[0,1]$.
$\Rightarrow(t-s) \varphi_{s}$ is Kantorovich potential for $\left(\mu_{s}, \mu_{t}\right)$.
Formally: $\mu_{1}=(\exp (-\nabla \varphi))_{\sharp} \mu_{0} ; \mu_{t}=\left(\exp \left(-(t-s) \nabla \varphi_{s}\right)\right)_{\sharp} \mu_{s}$.
$\gamma^{\prime}(t)=-\nabla \varphi_{t}\left(\gamma_{t}\right), \ell(\gamma)=\left|\nabla \varphi_{t}\left(\gamma_{t}\right)\right| \quad \forall t \in[0,1]$.
Hamilton-Jacobi: $\frac{d}{d t} \varphi_{t}=\frac{1}{2}\left|\nabla \varphi_{t}\right|^{2}$ (rigorously $=\frac{1}{2} \ell_{t}^{2}$ on $D_{\ell}$ ).
On $\mathrm{e}_{t}\left(G_{\varphi}\right), \ell_{t}\left(\gamma_{t}\right)=\ell(\gamma)$ is well-defined if $(X, \mathrm{~d})$ is geodesic \& proper.

## 1st Ingredient - Change-of-Variables Formula

Easy to check: $\varphi_{s}\left(\gamma_{s}\right)-\varphi_{t}\left(\gamma_{t}\right)=(t-s) \frac{\ell(\gamma)^{2}}{2} \forall t, s \in[0,1]$.
$\Rightarrow$ Define $\Phi_{s}^{t}:=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp} \varphi_{s}=\varphi_{s} \circ \mathrm{e}_{s} \circ \mathrm{e}_{t}^{-1}=\varphi_{t}+(t-s) \frac{\ell_{t}^{2}}{2}$.
Theorem (Change-of-Variables Formula)

with $\left([0,1],|\cdot|, h_{s}(t) d t\right) \in \operatorname{CD}\left(\ell(\gamma)^{2} K, N\right), h_{s}(s)=1$
> - $\gamma \subset$ transport-ray for $u_{s}=\operatorname{sgn}\left(\varphi_{s}-\varphi_{s}\left(\gamma_{s}\right)\right) d\left(\cdot,\left\{\varphi_{s}=\varphi_{s}\left(\gamma_{s}\right)\right\}\right.$
and $h_{s}(t)$ is obtained from $\operatorname{CD}_{U_{s}}^{1}(K, N)$ (cf. maximality of ray).
> - No Lip regularity of $\Phi_{s}^{t}(t \neq s)$ available, so no co-area allowed.
> - Used to prove $C D^{1} \Rightarrow C D$ but new even under CD.

## 1st Ingredient - Change-of-Variables Formula

Easy to check: $\varphi_{s}\left(\gamma_{s}\right)-\varphi_{t}\left(\gamma_{t}\right)=(t-s) \frac{\ell(\gamma)^{2}}{2} \forall t, s \in[0,1]$.
$\Rightarrow$ Define $\Phi_{s}^{t}:=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp} \varphi_{s}=\varphi_{s} \circ \mathrm{e}_{s} \circ \mathrm{e}_{t}^{-1}=\varphi_{t}+(t-s) \frac{\ell_{t}^{2}}{2}$.

## Theorem (Change-of-Variables Formula)

Let $(X, d, \mathfrak{m}) \in C D^{1}(K, N)$, e.n.b., $\mathfrak{m}(X)<\infty, K \in \mathbb{R}, N \in(1, \infty)$. Then $\forall \mu_{0}, \mu_{1} \in \mathcal{P}_{2}^{a c}(X, \mathrm{~d}, \mathfrak{m}), \exists$ versions of $\rho_{t}=\frac{d \mu_{t}}{d \mathfrak{m}}$, such that for $\nu$-a.e. $\gamma \in G_{\varphi}^{+}$, for a.e. $t, s \in(0,1),\left.\exists \partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)>0$, and:

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{\ell(\gamma)^{2}}{\left.\partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)} h_{s}(t) \quad \text { for a.e. } t, s \in(0,1)
$$

with $\left([0,1],|\cdot|, h_{s}(t) d t\right) \in \operatorname{CD}\left(\ell(\gamma)^{2} K, N\right), h_{s}(s)=1$.

- $\gamma \subset$ transport-ray for $u_{s}=\operatorname{sgn}\left(\varphi_{s}-\varphi_{s}\left(\gamma_{s}\right)\right) \mathrm{d}\left(\cdot,\left\{\varphi_{s}=\varphi_{s}\left(\gamma_{s}\right)\right\}\right)$, and $h_{s}(t)$ is obtained from $\mathrm{CD}_{u_{s}}^{1}(K, N)$ (cf. maximality of ray).
- No Lip regularity of $\Phi_{s}^{t}(t \neq s)$ available, so no co-area allowed.
- Used to prove $C D^{1} \Rightarrow C D$ but new even under CD.


## Change-of-Variables in the smooth setting

Fix $\gamma$ and recall $u_{s}=\operatorname{sgn}\left(\varphi_{s}-\varphi_{s}\left(\gamma_{s}\right)\right) \mathrm{d}\left(\cdot,\left\{\varphi_{s}=\varphi_{s}\left(\gamma_{s}\right)\right\}\right)$.

$$
\varphi_{s}\left(\gamma_{s}\right)-\varphi_{t}\left(\gamma_{t}\right)=(t-s) \frac{\ell(\gamma)^{2}}{2}
$$

- Let $T_{t}^{s}(x):=\exp _{x}\left(-(t-s) \nabla \varphi_{s}(x)\right)$ be the $L^{2}$-OT map.

$$
\left(T_{t}^{s}\right)_{\sharp}\left(\mu_{s}\right)=\mu_{t}, \text { so } \frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\left.\mathrm{Jac}\right|_{x=\gamma_{s}} T_{t}^{s}(x) .
$$

- Let $R_{t}^{s}(x):=\exp _{x}\left(-(t-s) \ell(\gamma) \nabla u_{s}\right)$ be the normal-ray map.

We have $R_{t}^{s}\left(\gamma_{s}\right)=T_{t}^{s}\left(\gamma_{s}\right)=\gamma_{t}$.
$\mathrm{CD}_{U_{s}}^{1}(K, N) \Rightarrow t \mapsto \mathrm{Jac}_{\left.\right|_{x=\gamma_{s}}} R_{t}^{s}(x)$ is $\operatorname{CD}\left(K \ell(\gamma)^{2}, N\right)$ density.

- Hence at $\gamma_{s}: \frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\operatorname{Jac} T_{t}^{s}=\frac{\operatorname{Jac} T_{t}^{s}}{\operatorname{Jac} R_{t}^{s}} \operatorname{Jac} R_{t}^{s}=: \lambda_{s}(t) h_{s}(t)$.
- Calculating, $\lambda_{s}(t)$ depends on angle between the levels sets of $\Phi_{s}^{t}$ and $\varphi_{t}$ at $\gamma_{t}$ :

$$
\frac{1}{\lambda_{s}(t)}=\frac{\left\langle\nabla \Phi_{s}^{t}\left(\gamma_{t}\right), \nabla \varphi_{t}\left(\gamma_{t}\right)\right\rangle}{\ell(\gamma)^{2}}=\frac{-\left\langle\nabla \Phi_{s}^{t}\left(\gamma_{t}\right), \gamma^{\prime}(t)\right\rangle}{\ell(\gamma)^{2}}=\frac{\left.\partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)}{\ell(\gamma)^{2}},
$$

where last equality follows since $\Phi_{s}^{t}\left(\gamma_{t}\right)=\varphi_{s}\left(\gamma_{s}\right)$ is constant in $t$.

## Change-of-Variables in mm-setting

Tools: Fubini, Disintegration of measure, uniqueness of disintegration.
Given good $G \subset G_{\varphi}^{+}$, fix $s$ and let $G_{a}$

- As $\mathrm{e}_{[0,1]}\left(G_{a_{s}}\right) \subset \mathcal{T}_{u_{s}}$, disintegrate on transport-rays of $u_{s}$ using $\mathrm{CD}_{u_{s}}^{1}$ $m L_{(0,1)}\left(G_{\left.a_{s}\right)}=\int_{e_{s}\left(G_{a s}\right)}\left(e_{s}^{-1}(\beta)\right)\right)_{t}\left(h_{\beta}^{a_{s}} \mathcal{L}^{1} L(0,1)\right) q^{a_{s}}(d \beta)=\int_{(0,1)} m_{t}^{a_{s}} \mathcal{L}^{1}(d t)$
obtaining a new disintegration over the partition $\left\{\mathrm{e}_{\mathrm{t}}\left(\mathrm{G}_{a_{s}}\right)\right\}$
Note that $\mathfrak{m}_{t}^{a_{s}}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right) \sharp\left(h^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}\right)$.
- Disintegrate on partition $\left\{\mathrm{e}_{t}\left(G_{a_{s}}\right)\right\}_{\text {a }}$


Multiplying both sides by $\rho_{t}$, the LHS is $\mu_{t}=\left(\mathrm{e}_{t}\right)_{\sharp}(\nu)$, a $W_{2}$-geodesic. Therefore, same holds true for the conditional measures: for a.e. $a_{s}$, $p_{t} \mathrm{~m}_{a_{s}}^{\dagger}=\left(\mathrm{e}_{t}\right)_{t}\left(\nu_{a_{s}}\right)$ is $W_{2}$-geodesic compatible with $G\left(\operatorname{supp}\left(\nu_{a_{s}}\right) \subset G_{a_{s}}\right)$ Hence: $\rho_{t} \mathrm{~m}_{a_{s}}^{t}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right) \sharp\left(\rho_{s} \mathrm{~m}_{a_{s}}^{s}\right)$.

## Change-of-Variables in mm-setting

Tools: Fubini, Disintegration of measure, uniqueness of disintegration. Given good $G \subset G_{\varphi}^{+}$, fix $s$ and let $G_{a_{s}}:=\left\{\gamma \in G ; \varphi_{s}\left(\gamma_{s}\right)=a_{s}\right\}$.

- As $\mathrm{e}_{[0,1]}\left(G_{a_{s}}\right) \subset \mathcal{T}_{u_{s}}$, disintegrate on transport-rays of $u_{s}$ using $\mathrm{CD}_{u_{s}}^{1}$ :

$$
\mathfrak{m}_{\left\llcorner_{(0,1)}\left(G_{a s}\right)\right.}=\int_{\mathrm{e}_{s}\left(G_{a s}\right)}\left(\mathrm{e}_{s}^{-1}(\beta)\right)_{\sharp}\left(h_{\beta}^{a_{s}} \mathcal{L}^{1}\llcorner(0,1)) \mathfrak{q}^{a_{s}}(d \beta)=\int_{(0,1)} \mathfrak{m}_{t}^{a_{s}} \mathcal{L}^{1}(d t),\right.
$$

obtaining a new disintegration over the partition $\left\{\mathrm{e}_{t}\left(\mathrm{G}_{a_{s}}\right)\right\}_{t \in(0,1)}$.
Note that $\mathfrak{m}_{t}^{a_{s}}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(h^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}\right)$.

- Disintegrate on partition $\left\{\mathrm{e}_{t}\left(G_{a_{s}}\right)\right\}_{a_{s} \in \mathbb{R}}$ :

$$
\mathfrak{m}\left\llcorner_{\mathrm{e}_{t}(G)}=\int_{\varphi_{s}\left(\mathrm{e}_{s}(G)\right)} \hat{\mathfrak{m}}_{\mathrm{a}_{s}}^{t} \mathfrak{q}_{s}^{t}\left(d a_{s}\right)={ }_{\mathfrak{q}_{s}^{t} \ll \mathcal{L}^{1}} \int_{\varphi_{s}\left(\mathrm{e}_{s}(G)\right)} \mathfrak{m}_{a_{s}}^{t} \mathcal{L}^{1}\left(d a_{s}\right) .\right.
$$

Multiplying both sides by $\rho_{t}$, the LHS is $\mu_{t}=\left(\mathrm{e}_{t}\right)_{\sharp}(\nu)$, a $W_{2}$-geodesic. Therefore, same holds true for the conditional measures: for a.e. $a_{s}$, $\rho_{t} \mathfrak{m}_{a_{s}}^{t}=\left(\mathrm{e}_{t}\right)_{\sharp}\left(\nu_{\mathrm{a}_{s}}\right)$ is $W_{2}$-geodesic compatible with $G\left(\operatorname{supp}\left(\nu_{a_{s}}\right) \subset G_{a_{s}}\right)$. Hence: $\rho_{t} \mathfrak{m}_{\mathrm{a}_{s}}^{t}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(\rho_{s} \mathfrak{m}_{a_{s}}^{s}\right)$.

$$
\begin{gathered}
\mathfrak{m}_{\left\llcorner_{(0,1)}\left(G_{a_{s}}\right)\right.}=\int_{(0,1)} \mathfrak{m}_{t}^{a_{s}} \mathcal{L}^{1}(d t), \mathfrak{m}_{\left\llcorner_{t}(G)\right.}=\int_{\varphi_{s}\left(\mathrm{e}_{s}(G)\right)} \mathfrak{m}_{a_{s}}^{t} \mathcal{L}^{1}\left(d a_{s}\right) . \\
\mathfrak{m}_{t}^{a_{s}}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(h_{\cdot}^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}\right), \rho_{t} \mathfrak{m}_{a_{s}}^{t}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(\rho_{s} \mathfrak{m}_{a_{s}}^{s}\right) .
\end{gathered}
$$

For a.e. $t \in(0,1)$, $a_{s} \in \varphi_{s}\left(G_{a_{s}}\right), \mathfrak{m}_{t}^{a_{s}}, \mathfrak{m}_{a_{s}}^{t}$ are concentrated in $\mathrm{e}_{t}\left(G_{a_{s}}\right)$.
$\square$
Cor: Calculating Radon-Nykodim derivative:

Formal Proof of Thm: write $\Phi_{s}^{t}(x)=\Phi_{s}(t, x)$.
$e_{t}\left(G_{a_{s}}\right)=e_{t}(G) \cap\left\{x ; \dot{\Phi}_{s}(t, x)=a_{s}\right\}=e_{t}(G) \cap\left\{x ; \Phi_{s}(\cdot, x)^{-1}\left(a_{s}\right)=t\right\}$
By formal coarea $\frac{\mathfrak{m}_{t}^{a_{s}}}{\mathfrak{m}_{a_{s}}^{t}}=\frac{\left|\nabla_{x} \Phi_{s}(t, x)\right|}{\left|\nabla_{x} \Phi_{s}(\cdot, x)^{-1}\left(a_{s}\right)\right|}=\left|-\partial_{t} \Phi_{s}(t, x)\right|$, since by
implicit function thm: $\Phi\left(\Phi^{-1}(a, x), x\right)=a \Rightarrow \nabla_{x} \Phi+\partial_{t} \Phi \nabla_{x} \Phi^{-1}=0$.

$$
\begin{gathered}
\mathfrak{m}_{\left\llcorner_{(0,1)}\left(G_{a_{s}}\right)\right.}=\int_{(0,1)} \mathfrak{m}_{t}^{a_{s}} \mathcal{L}^{1}(d t), \mathfrak{m}_{\left\llcorner^{e}(G)\right.}=\int_{\varphi_{s}\left(\mathrm{e}_{s}(G)\right)} \mathfrak{m}_{a_{s}}^{t} \mathcal{L}^{1}\left(d a_{s}\right) . \\
\mathfrak{m}_{t}^{a_{s}}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(h_{.}^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}\right), \rho_{t} \mathfrak{m}_{a_{s}}^{t}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(\rho_{s} \mathfrak{m}_{a_{s}}^{s}\right) .
\end{gathered}
$$

For a.e. $t \in(0,1)$, $a_{s} \in \varphi_{s}\left(G_{a_{s}}\right), \mathfrak{m}_{t}^{a_{s}}, \mathfrak{m}_{a_{s}}^{t}$ are concentrated in $\mathrm{e}_{t}\left(G_{a_{s}}\right)$.

Cor: Calculating Radon-Nykodim derivative:

Formal Proof of Thm: write $\Phi_{s}^{t}(x)=\Phi_{s}(t, x)$.
$e_{t}\left(G_{a_{s}}\right)=e_{t}(G) \cap\left\{x ; \Phi_{s}(t, x)=a_{s}\right\}=e_{t}(G) \cap\left\{x ; \Phi_{s}(\cdot, x)^{-1}\left(a_{s}\right)=t\right\}$
By formal coarea $\frac{\mathfrak{m}_{t}^{a_{s}}}{\mathfrak{m}_{a_{s}}^{t}}=\frac{\left|\nabla_{x} \Phi_{s}(t, x)\right|}{\left|\nabla_{x} \Phi_{s}(\cdot, x)^{-1}\left(a_{s}\right)\right|}=\left|-\partial_{t} \Phi_{s}(t, x)\right|$, since by
implicit function thm: $\Phi\left(\Phi^{-1}(a, x), x\right)=a \Rightarrow \nabla_{x} \Phi+\partial_{t} \Phi \nabla_{x} \Phi^{-1}=0$.

$$
\begin{gathered}
\mathfrak{m}_{\left\llcorner_{(0,1)}\left(G_{a_{s}}\right)\right.}=\int_{(0,1)} \mathfrak{m}_{t}^{a_{s}} \mathcal{L}^{1}(d t), \mathfrak{m}_{\left\llcorner_{t}(G)\right.}=\int_{\varphi_{s}\left(\mathrm{e}_{s}(G)\right)} \mathfrak{m}_{a_{s}}^{t} \mathcal{L}^{1}\left(d a_{s}\right) . \\
\mathfrak{m}_{t}^{a_{s}}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(h_{\cdot}^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}\right), \rho_{t} \mathfrak{m}_{a_{s}}^{t}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(\rho_{s} \mathfrak{m}_{a_{s}}^{s}\right) .
\end{gathered}
$$

For a.e. $t \in(0,1), a_{s} \in \varphi_{s}\left(G_{a_{s}}\right), \mathfrak{m}_{t}^{a_{s}}, \mathfrak{m}_{a_{s}}^{t}$ are concentrated in $\mathrm{e}_{t}\left(G_{a_{s}}\right)$.
Thm: for a.e. $s, t \in(0,1), a_{s} \in \varphi_{s}\left(G_{a_{s}}\right), \mathfrak{m}_{t}^{a_{s}}=\partial_{t} \Phi_{s}^{t} \mathfrak{m}_{a_{s}}^{t}$.
Cor: Calculating Radon-Nykodim derivative:

$$
\frac{\left.\partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\left.\frac{\mathfrak{m}_{t}^{a_{s}}}{\rho_{t} \mathfrak{m}_{a_{s}}^{t}}\right|_{\gamma_{t}}=\left.\frac{h^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}}{\rho_{s} \mathfrak{m}_{a_{s}}^{s}}\right|_{\gamma_{s}}=\left.\frac{h_{s}(t)}{\rho_{s}\left(\gamma_{s}\right)} \partial_{\tau}\right|_{\tau=s} \Phi_{s}^{\tau}\left(\gamma_{s}\right)=\frac{h_{s}(t)}{\rho_{s}\left(\gamma_{s}\right)} \ell(\gamma)^{2}
$$

Formal Proof of Thm: write $\Phi_{s}^{t}(x)=\Phi_{s}(t, x)$.
$\mathrm{e}_{t}\left(G_{a_{s}}\right)=\mathrm{e}_{t}(G) \cap\left\{x ; \Phi_{s}(t, x)=a_{s}\right\}=\mathrm{e}_{t}(G) \cap\left\{x ; \Phi_{s}(\cdot, x)^{-1}\left(a_{s}\right)=t\right\}$
By formal coarea $\frac{\mathrm{m}^{\mathrm{a}_{s}}}{\mathrm{~m}^{t}}=\frac{\left|\nabla_{x} \phi_{s}(t, x)\right|}{\left|\nabla_{x} \Phi_{s}(\cdot, x)^{-1}\left(a_{s}\right)\right|}=\left|-\partial_{t} \Phi_{s}(t, x)\right|$, since by

$$
\begin{aligned}
& \mathfrak{m}_{\mathrm{e}_{(0,1)}}\left(G_{a_{s}}\right)=\int_{(0,1)} \mathfrak{m}_{t}^{a_{s}} \mathcal{L}^{1}(d t), \mathfrak{m}_{\left\llcorner^{e_{t}}(G)\right.} \\
&=\int_{\varphi_{s}\left(\mathrm{e}_{s}(G)\right)} \mathfrak{m}_{a_{s}}^{t} \mathcal{L}^{1}\left(d a_{s}\right) . \\
& \mathfrak{m}_{t}^{a_{s}}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(h^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}\right), \rho_{t} \mathfrak{m}_{a_{s}}^{t}=\left(\mathrm{e}_{t} \circ \mathrm{e}_{s}^{-1}\right)_{\sharp}\left(\rho_{s} \mathfrak{m}_{a_{s}}^{s}\right) .
\end{aligned}
$$

For a.e. $t \in(0,1), a_{s} \in \varphi_{s}\left(G_{a_{s}}\right), \mathfrak{m}_{t}^{a_{s}}, \mathfrak{m}_{a_{s}}^{t}$ are concentrated in $\mathrm{e}_{t}\left(G_{a_{s}}\right)$.
Thm: for a.e. $s, t \in(0,1), a_{s} \in \varphi_{s}\left(G_{a_{s}}\right), \mathfrak{m}_{t}^{a_{s}}=\partial_{t} \phi_{s}^{t} \mathfrak{m}_{a_{s}}^{t}$.
Cor: Calculating Radon-Nykodim derivative:

$$
\frac{\left.\partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\left.\frac{\mathfrak{m}_{t}^{a_{s}}}{\rho_{t} \mathfrak{m}_{a_{s}}^{t}}\right|_{\gamma_{t}}=\left.\frac{h^{a_{s}}(t) \mathfrak{m}_{s}^{a_{s}}}{\rho_{s} \mathfrak{m}_{a_{s}}^{s}}\right|_{\gamma_{s}}=\left.\frac{h_{s}(t)}{\rho_{s}\left(\gamma_{s}\right)} \partial_{\tau}\right|_{\tau=s} \Phi_{s}^{\tau}\left(\gamma_{s}\right)=\frac{h_{s}(t)}{\rho_{s}\left(\gamma_{s}\right)} \ell(\gamma)^{2}
$$

Formal Proof of Thm: write $\Phi_{s}^{t}(x)=\Phi_{s}(t, x)$.
$\mathrm{e}_{t}\left(G_{a_{s}}\right)=\mathrm{e}_{t}(G) \cap\left\{x ; \Phi_{s}(t, x)=a_{s}\right\}=e_{t}(G) \cap\left\{x ; \Phi_{s}(\cdot, x)^{-1}\left(a_{s}\right)=t\right\}$.
By formal coarea $\frac{\mathfrak{m}_{t}^{a_{s}}}{\mathfrak{m}_{a_{s}}^{t}}=\frac{\left|\nabla_{x} \Phi_{s}(t, x)\right|}{\left|\nabla_{x} \Phi_{s}(;, x)^{-1}\left(a_{s}\right)\right|}=\left|-\partial_{t} \Phi_{s}(t, x)\right|$, since by implicit function thm: $\Phi\left(\Phi^{-1}(a, x), x\right)=a \Rightarrow \nabla_{x} \Phi+\partial_{t} \Phi \nabla_{x} \Phi^{-1}=0$.

## 2nd Ingredient - 3rd order information on $t \mapsto \varphi_{t}$

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{\ell(\gamma)^{2}}{\left.\partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)} h_{s}(t)
$$

for a.e. $t, s \in(0,1)$.

Formally: $\Phi_{s}^{t}=\varphi_{t}+(t-s) \frac{\ell_{t}^{2}}{2}, \partial_{t} \varphi_{t}=\frac{1}{2} \ell_{t}^{2}, \partial_{t} \Phi_{s}^{t}=\ell_{t}^{2}+(t-s) \partial_{t} \frac{\ell_{t}^{2}}{2}$.

## Want: $\frac{1}{\rho\left(\gamma^{\prime}\right)}=L_{\gamma}(t) Y_{\gamma}(t), L_{\gamma}$ concave and $Y_{\gamma}^{N-1} \sigma_{K N-1}^{(t)}$-concave.

 Main difficulty: need $\partial_{t}$ of denominator, i.e. $\partial_{t}^{2} \ell_{t}^{2}$, i.e. $\partial_{t}^{3} \varphi_{t}$.Theorem (On a general proper geodesic ( $Y$ d) )
For any $\gamma \in G_{\varphi}$, if $\left.\exists \frac{1}{(f)^{2}} \partial_{\tau}\right|_{\tau=t} \ell_{\tau}^{2} / 2\left(\gamma_{t}\right)$ for a.e. $t \in(0,1)$ and coincides
$w /$ absolutely continuous $z$, then $z^{\prime}(t) \geq z(t)^{2}$ for a.e. $t \in(0,1)$.
The conclusion is equivalent to the assertion that:


## 2nd Ingredient - 3rd order information on $t \mapsto \varphi_{t}$

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{\ell(\gamma)^{2}}{\left.\partial_{\tau}\right|_{\tau=t} \phi_{s}^{\tau}\left(\gamma_{t}\right)} h_{s}(t)=\frac{h_{s}(t)}{1+(t-s) \frac{\left.\partial_{\tau}\right|_{\tau=t} \ell_{\tau}^{2} / 2(\gamma t)}{\ell^{2}(\gamma)}} \text { for a.e. } t, s \in(0,1) \text {. }
$$

Formally: $\phi_{s}^{t}=\varphi_{t}+(t-s) \frac{\ell_{t}^{2}}{2}, \partial_{t} \varphi_{t}=\frac{1}{2} \ell_{t}^{2}, \partial_{t} \phi_{s}^{t}=\ell_{t}^{2}+(t-s) \partial_{t} \frac{t_{2}^{2}}{2}$.

## Want: $\frac{1}{N(\nu)}=L_{\gamma}(t) Y_{\gamma}(t), L_{\gamma}$ concave and $Y_{\gamma}^{N-1} \sigma_{K N-1}^{(t)}{ }^{(1)}$-concave.

Main difficulty: need $\partial_{t}$ of denominator, i.e. $\partial_{t}^{2} \ell_{t}^{2}$, i.e. $\partial_{t}^{3} \varphi_{t}$.

## Theorem (On a general proper ceodesic ( $X$. d))

$\square$ $w /$ absolutely continuous $z$, then $z^{\prime}(t) \geq z(t)^{2}$ for a.e. $t \in(0,1)$.

The conclusion is equivalent to the assertion that:

## 2nd Ingredient - 3rd order information on $t \mapsto \varphi_{t}$

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{\ell(\gamma)^{2}}{\left.\partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)} h_{s}(t)=\frac{h_{s}(t)}{1+(t-s) \frac{\left.\partial_{\tau}\right|_{\tau=t} \ell_{\tau}^{2} / 2\left(\gamma_{t}\right)}{\ell^{2}(\gamma)}} \text { for a.e. } t, s \in(0,1)
$$

Formally: $\Phi_{s}^{t}=\varphi_{t}+(t-s) \frac{\ell_{t}^{2}}{2}, \partial_{t} \varphi_{t}=\frac{1}{2} \ell_{t}^{2}, \partial_{t} \Phi_{s}^{t}=\ell_{t}^{2}+(t-s) \partial_{t} \frac{\ell_{t}^{2}}{2}$.
Want: $\frac{1}{\rho_{t}\left(\gamma_{t}\right)}=L_{\gamma}(t) Y_{\gamma}(t), L_{\gamma}$ concave and $Y_{\gamma}^{\frac{1}{N-1}} \sigma_{K, N-1}^{(t)}$-concave. Main difficulty: need $\partial_{t}$ of denominator, i.e. $\partial_{t}^{2} \ell_{t}^{2}$, i.e. $\partial_{t}^{3} \varphi_{t}$.

## Theorem (On a general proper geodesic $(X, d))$ <br> $\square$

$w /$ absolutely continuous $z$, then $>^{\prime}(t) \gg(t)^{2}$ for a e $t \in(0,1)$
The conclusion is equivalent to the assertion that:

## 2nd Ingredient - 3rd order information on $t \mapsto \varphi_{t}$

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{\ell(\gamma)^{2}}{\left.\partial_{\tau}\right|_{\tau=t} \Phi_{s}^{\tau}\left(\gamma_{t}\right)} h_{s}(t)=\frac{h_{s}(t)}{1+(t-s) \frac{\left.\partial_{\tau}\right|_{\tau=t} \ell_{\tau}^{2} / 2\left(\gamma_{t}\right)}{\ell^{2}(\gamma)}} \text { for a.e. } t, s \in(0,1)
$$

Formally: $\Phi_{s}^{t}=\varphi_{t}+(t-s) \frac{\ell_{t}^{2}}{2}, \partial_{t} \varphi_{t}=\frac{1}{2} \ell_{t}^{2}, \partial_{t} \Phi_{s}^{t}=\ell_{t}^{2}+(t-s) \partial_{t} \frac{\ell_{t}^{2}}{2}$.
Want: $\frac{1}{\rho_{t}\left(\gamma_{t}\right)}=L_{\gamma}(t) Y_{\gamma}(t), L_{\gamma}$ concave and $Y_{\gamma}^{\frac{1}{N-1}} \sigma_{K, N-1}^{(t)}$-concave. Main difficulty: need $\partial_{t}$ of denominator, i.e. $\partial_{t}^{2} \ell_{t}^{2}$, i.e. $\partial_{t}^{3} \varphi_{t}$.

## Theorem (On a general proper geodesic ( $X, \mathrm{~d}$ ))

For any $\gamma \in G_{\varphi}$, if $\left.\exists \frac{1}{\ell(\gamma)^{2}} \partial_{\tau}\right|_{\tau=t} \ell_{\tau}^{2} / 2\left(\gamma_{t}\right)$ for a.e. $t \in(0,1)$ and coincides $w /$ absolutely continuous $z$, then $z^{\prime}(t) \geq z(t)^{2}$ for a.e. $t \in(0,1)$.

The conclusion is equivalent to the assertion that:
$(0,1) \ni r \mapsto L(r):=\exp \left(-\left.\frac{1}{\ell(\gamma)^{2}} \int_{r_{0}}^{r} \partial_{\tau}\right|_{\tau=t} \frac{\ell_{\tau}^{2}}{2}\left(\gamma_{t}\right) d t\right)$ is concave ,
since: $\frac{L^{\prime \prime}}{L}=(\log L)^{\prime \prime}+\left((\log L)^{\prime}\right)^{2}=-z^{\prime}+z^{2} \leq 0$.

## Formal argument in smooth Riemannian setting

Recall H-J: $\partial_{t} \varphi_{t}=\frac{1}{2} \ell_{t}^{2}=\frac{1}{2}\left|\nabla \varphi_{t}\right|^{2}, \bar{z}(t)=\partial_{t}^{2} \varphi_{t}(\gamma(t)), \quad z(t)=\frac{\bar{z}(t)}{\ell(\gamma)^{2}}$.
(we evaluate all subsequent functions at $\boldsymbol{x}=\gamma_{t}$ ). Calculate:

$$
\bar{z}^{\prime}(t)=\partial_{t}^{3} \varphi_{t}+\left\langle\nabla \partial_{t}^{2} \varphi_{t}, \gamma^{\prime}(t)\right\rangle=\partial_{t}^{3} \varphi_{t}-\left\langle\nabla \partial_{t}^{2} \varphi_{t}, \nabla \varphi_{t}\right\rangle .
$$

But taking two time derivatives in $(\mathrm{H}-\mathrm{J})$, we know that:

$$
\partial_{t}^{3} \varphi_{t}=\left\langle\nabla \partial_{t}^{2} \varphi_{t}, \nabla \varphi_{t}\right\rangle+\left\langle\nabla \partial_{t} \varphi_{t}, \nabla \partial_{t} \varphi_{t}\right\rangle \quad \Rightarrow \quad \bar{z}^{\prime}(t)=\left|\nabla \partial_{t} \varphi_{t}\right|^{2} .
$$

It follows by Cauchy-Schwarz that:

$$
\bar{z}^{\prime}(t) \geq \frac{\left\langle\nabla \partial_{t} \varphi_{t}, \nabla \varphi_{t}\right\rangle^{2}}{\left|\nabla \varphi_{t}\right|^{2}}=\frac{\left\langle\nabla \partial_{t} \varphi_{t}, \nabla \varphi_{t}\right\rangle^{2}}{\ell^{2}(\gamma)}=\frac{\bar{z}(t)^{2}}{\ell^{2}(\gamma)},
$$

where last identity since $\partial_{t} \varphi_{t}\left(\gamma_{t}\right)=\ell_{t}^{2} / 2\left(\gamma_{t}\right)=\ell(\gamma)^{2} / 2$ is constant:

$$
0=\partial_{t}^{2} \varphi_{t}+\left\langle\nabla \partial_{t} \varphi_{t}, \gamma^{\prime}(t)\right\rangle=\bar{z}(t)-\left\langle\nabla \partial_{t} \varphi_{t}, \nabla \varphi_{t}\right\rangle .
$$

## $\bar{z}^{\prime}(t) \geq \bar{z}(t)^{2} / \ell(\gamma)^{2}-\operatorname{In}$ reality...

Previous argument (wrongly) suggests that Hilbertianity is crucial.
$\bar{z}(t) "=\left." \ell(\gamma) \partial_{\tau}^{ \pm}\right|_{\tau=t} \ell_{\tau}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t \frac{\ell_{\tau}^{2}}{2}}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \partial_{\tau} \varphi_{\tau}\left(\gamma_{t}\right)$ are usual
upper/lower 2nd (partial) deriv's of $\tau \mapsto \varphi_{\tau}$ at $\tau=t, x=\gamma_{t}$.
Set $h(t$
Then $\bar{z}(t)$ " $=$ " $\overline{\operatorname{im}}_{\varepsilon \rightarrow 0} \frac{h(t, \varepsilon)}{\varepsilon^{2}}$ are 2nd Peano upper/lower deriv's.
$\exists$ 2nd derivative $\Rightarrow \exists$ 2nd Peano derivative, but not vice versa.
What we actually show is: $\forall \gamma \in G, s<t \in(|\varepsilon|, 1-|\varepsilon|)$


Idea: on geodesic proper space, $\exists y_{\varepsilon}^{ \pm}$such that (AGS):


## $\bar{z}^{\prime}(t) \geq \bar{z}(t)^{2} / \ell(\gamma)^{2}-\operatorname{In}$ reality...

Previous argument (wrongly) suggests that Hilbertianity is crucial.
$\bar{z}(t) "=\left." \ell(\gamma) \partial_{\tau}^{ \pm}\right|_{\tau=t} \ell_{\tau}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \frac{\ell_{\tau}^{2}}{2}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \partial_{\tau} \varphi_{\tau}\left(\gamma_{t}\right)$ are usual upper/lower 2nd (partial) deriv's of $\tau \mapsto \varphi_{\tau}$ at $\tau=t, x=\gamma_{t}$.

Then $\bar{z}(t) "=" \overline{\lim }_{\varepsilon \rightarrow 0} \frac{h(t, \varepsilon)}{\varepsilon^{2}}$ are 2nd Peano upper/lower deriv's.
$\exists$ 2nd derivative $\Rightarrow \exists$ 2nd Peano derivative, but not vice versa.
What we actually show is: $\forall \gamma \in G_{\varphi}, s<t \in(|\varepsilon|, 1-|\varepsilon|)$


Idea: on geodesic proper space, $\exists y_{\varepsilon}^{ \pm}$such that (AGS):

## $\bar{z}^{\prime}(t) \geq \bar{z}(t)^{2} / \ell(\gamma)^{2}-\operatorname{In}$ reality...

Previous argument (wrongly) suggests that Hilbertianity is crucial.
$\bar{z}(t) "=\left." \ell(\gamma) \partial_{\tau}^{ \pm}\right|_{\tau=t} \ell_{\tau}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \frac{\ell_{\tau}^{2}}{2}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \partial_{\tau} \varphi_{\tau}\left(\gamma_{t}\right)$ are usual upper/lower 2nd (partial) deriv's of $\tau \mapsto \varphi_{\tau}$ at $\tau=t, x=\gamma_{t}$.
Set $h(t, \varepsilon):=2\left(\varphi_{t+\varepsilon}\left(\gamma_{t}\right)-\varphi_{t}\left(\gamma_{t}\right)-\varepsilon \frac{\ell^{2}(\gamma)}{2}\right)$.
Then $\bar{z}(t) "=" \overline{\lim }_{\varepsilon \rightarrow 0} \frac{h(t, \varepsilon)}{\varepsilon^{2}}$ are 2nd Peano upper/lower deriv's.
$\exists$ 2nd derivative $\Rightarrow \exists$ 2nd Peano derivative, but not vice versa.
What we actually show is: $\forall \gamma \in G_{\varphi}, s<t \in(|\varepsilon|, 1-|\varepsilon|)$


Idea: on geodesic proper space, $\exists y_{\varepsilon}^{ \pm}$such that (AGS)

Previous argument (wrongly) suggests that Hilbertianity is crucial.
$\bar{z}(t) "=\left." \ell(\gamma) \partial_{\tau}^{ \pm}\right|_{\tau=t} \ell_{\tau}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \frac{\ell_{\tau}^{2}}{2}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \partial_{\tau} \varphi_{\tau}\left(\gamma_{t}\right)$ are usual upper/lower 2nd (partial) deriv's of $\tau \mapsto \varphi_{\tau}$ at $\tau=t, x=\gamma_{t}$.
Set $h(t, \varepsilon):=2\left(\varphi_{t+\varepsilon}\left(\gamma_{t}\right)-\varphi_{t}\left(\gamma_{t}\right)-\varepsilon \frac{\ell^{2}(\gamma)}{2}\right)$.
Then $\bar{z}(t) "=" \overline{\lim }_{\varepsilon \rightarrow 0} \frac{h(t, \varepsilon)}{\varepsilon^{2}}$ are 2nd Peano upper/lower deriv's.
$\exists$ 2nd derivative $\Rightarrow \exists$ 2nd Peano derivative, but not vice versa.
What we actually show is: $\forall \gamma \in G_{\varphi}, s<t \in(|\varepsilon|, 1-|\varepsilon|)$
$\frac{h(t, \varepsilon)-h(s, \varepsilon)}{t-s} \geq \frac{s+\varepsilon}{t+\varepsilon}\left(\ell_{s+\varepsilon}^{ \pm}\left(\gamma_{s}\right)-\ell_{s}\left(\gamma_{s}\right)\right)^{2}\left(\lim _{\varepsilon \rightarrow 0, t \rightarrow s} \frac{\overline{\varepsilon^{2}}}{} \Rightarrow \bar{z}^{\prime} \geq \frac{\bar{z}^{2}}{\ell(\gamma)^{2}}\right)$.
Idea: on geodesic proper space, $\exists y_{\varepsilon}^{ \pm}$such that (AGS):

## $\bar{z}^{\prime}(t) \geq \bar{z}(t)^{2} / \ell(\gamma)^{2}-\operatorname{In}$ reality...

Previous argument (wrongly) suggests that Hilbertianity is crucial.
$\bar{z}(t) "=\left." \ell(\gamma) \partial_{\tau}^{ \pm}\right|_{\tau=t} \ell_{\tau}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \frac{\ell_{\tau}^{2}}{2}\left(\gamma_{t}\right)=\left.\partial_{\tau}^{ \pm}\right|_{\tau=t} \partial_{\tau} \varphi_{\tau}\left(\gamma_{t}\right)$ are usual upper/lower 2nd (partial) deriv's of $\tau \mapsto \varphi_{\tau}$ at $\tau=t, \boldsymbol{x}=\gamma_{t}$.
Set $h(t, \varepsilon):=2\left(\varphi_{t+\varepsilon}\left(\gamma_{t}\right)-\varphi_{t}\left(\gamma_{t}\right)-\varepsilon \frac{\ell^{2}(\gamma)}{2}\right)$.
Then $\bar{z}(t) "=" \overline{\lim }_{\varepsilon \rightarrow 0} \frac{h(t, \varepsilon)}{\varepsilon^{2}}$ are 2nd Peano upper/lower deriv's.
$\exists$ 2nd derivative $\Rightarrow \exists$ 2nd Peano derivative, but not vice versa.
What we actually show is: $\forall \gamma \in G_{\varphi}, s<t \in(|\varepsilon|, 1-|\varepsilon|)$
$\frac{h(t, \varepsilon)-h(s, \varepsilon)}{t-s} \geq \frac{s+\varepsilon}{t+\varepsilon}\left(\ell_{s+\varepsilon}^{ \pm}\left(\gamma_{s}\right)-\ell_{s}\left(\gamma_{s}\right)\right)^{2}\left(\lim _{\varepsilon \rightarrow 0, t \rightarrow s} \frac{\dot{\varepsilon^{2}}}{} \Rightarrow \bar{z}^{\prime} \geq \frac{\bar{z}^{2}}{\ell(\gamma)^{2}}\right.$
Idea: on geodesic proper space, $\exists y_{\varepsilon}^{ \pm}$such that (AGS):

$$
\begin{aligned}
& -\varphi_{s+\varepsilon}\left(\gamma_{s}\right)=\frac{\mathrm{d}^{2}\left(y_{\varepsilon}^{ \pm}, \gamma_{s}\right)}{2(s+\varepsilon)}-\varphi\left(y_{\varepsilon}^{ \pm}\right), \mathrm{d}\left(y_{\varepsilon}^{ \pm}, \gamma_{s}\right)=(s+\varepsilon) \ell_{s+\varepsilon}^{ \pm}\left(\gamma_{s}\right) \\
& -\varphi_{t+\varepsilon}\left(\gamma_{t}\right) \leq \frac{\mathrm{d}^{2}\left(y_{\varepsilon}^{ \pm}, \gamma_{t}\right)}{2(t+\varepsilon)}-\varphi\left(y_{\varepsilon}^{ \pm}\right), \mathrm{d}\left(y_{\varepsilon}^{ \pm}, \gamma_{t}\right) \leq \mathrm{d}\left(y_{\varepsilon}^{ \pm}, \gamma_{s}\right)+\mathrm{d}\left(\gamma_{s}, \gamma_{t}\right)
\end{aligned}
$$

## 3rd Ingredient - Rigidity of CoV Formula

For $\nu$-a.e. $\gamma \in G_{\varphi}^{+}$, the Change-of-Variables Formula yields:

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{h_{s}(t)}{1+(t-s) \frac{\partial_{\tau} \mid \tau=\ell^{2} / 2\left(\gamma_{t}\right)}{\ell^{2}(\gamma)}} \text { for a.e. } t, s \in(0,1) \text {. }
$$

Note separation of variables on LHS and linearity in $s$ in denominator; this allows to gain additional order of regularity in $t, s$.


## Theorem

Assume that on $(0,1), p(t)$ locally Lipschitz, $\left\{h_{s}(t)\right\}_{s \in(0.1)}$ are
$\square$
densities, $z^{\prime}(t) \geq z^{2}(t)$ a.e., and:

## 3rd Ingredient - Rigidity of CoV Formula

For $\nu$-a.e. $\gamma \in G_{\varphi}^{+}$, the Change-of-Variables Formula yields:

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{h_{s}(t)}{1+(t-s) \frac{\partial_{\tau} \mid \tau=\ell^{2} / 2\left(\gamma_{t}\right)}{\ell^{2}(\gamma)}} \text { for a.e. } t, s \in(0,1) \text {. }
$$

Note separation of variables on LHS and linearity in $s$ in denominator; this allows to gain additional order of regularity in $t, s$. Indeed:
$t \mapsto \rho_{t}\left(\gamma_{t}\right), h_{s}(t)$ are locally Lipschitz, hence $\frac{\left.\partial_{\tau}\right|_{\tau=t t^{2}} ^{\ell^{2}} / 2\left(\gamma \gamma_{t}\right)}{\ell^{2}(\gamma)}=z(t)$ a.e. with $z$ locally Lipschitz, and hence $z^{\prime} \geq z^{2}$ a.e. by 2nd Ingredient. Moreover, we can redefine $\left\{h_{s}\right\}_{s \in S}$ so that $s \mapsto h_{s}(t)$ is loc. Lipschitz.

Theorem
Assume that on $(0,1), \rho(t)$ locally Lipschitz, $\left\{h_{s}(t)\right\}_{s \in(0,1)}$ are
densities, $z^{\prime}(t) \geq z^{2}(t)$ a.e., and:

## 3rd Ingredient - Rigidity of CoV Formula

For $\nu$-a.e. $\gamma \in G_{\varphi}^{+}$, the Change-of-Variables Formula yields:

$$
\frac{\rho_{s}\left(\gamma_{s}\right)}{\rho_{t}\left(\gamma_{t}\right)}=\frac{h_{s}(t)}{1+(t-s) \frac{\partial_{\tau} \mid \tau=\ell_{\tau}^{2} / 2\left(\gamma_{t}\right)}{\ell^{2}(\gamma)}} \text { for a.e. } t, s \in(0,1) \text {. }
$$

Note separation of variables on LHS and linearity in $s$ in denominator; this allows to gain additional order of regularity in $t, s$. Indeed:
$t \mapsto \rho_{t}\left(\gamma_{t}\right), h_{s}(t)$ are locally Lipschitz, hence $\frac{\left.\partial_{\tau}\right|_{\tau=t} t^{2} / 2\left(\gamma_{t}\right)}{\ell^{2}(\gamma)}=z(t)$ a.e. with $z$ locally Lipschitz, and hence $z^{\prime} \geq z^{2}$ a.e. by 2nd Ingredient. Moreover, we can redefine $\left\{h_{s}\right\}_{s \in S}$ so that $s \mapsto h_{s}(t)$ is loc. Lipschitz.

## Theorem

Assume that on $(0,1), \rho(t)$ locally Lipschitz, $\left\{h_{s}(t)\right\}_{s \in(0,1)}$ are $\mathrm{CD}\left(K_{0}, N\right)$ densities, $z^{\prime}(t) \geq z^{2}(t)$ a.e., and:

$$
\frac{\rho(s)}{\rho(t)}=\frac{h_{s}(t)}{1+(t-s) z(t)} \text { for a.e. } t, s \in(0,1) .
$$

Then: $\frac{1}{\rho(t)}=L(t) Y(t)$, with $L$ concave and $Y$ a $\mathrm{CD}\left(K_{0}, N\right)$ density.

## Formal Argument using rigidity

Fix any $r_{0} \in(0,1)$, and define the functions $L$ and $Y$ by:

$$
\begin{aligned}
& \log L(r):=-\int_{r_{0}}^{r} z(s) d s, \log Y(r):=\left.\int_{r_{0}}^{r} \partial_{t}\right|_{t=s} \log h_{s}(t) d s \\
& \Longrightarrow \log \frac{\rho\left(r_{0}\right)}{\rho(r)}=\left.\int_{r_{0}}^{r} \partial_{t}\right|_{t=s} \log \frac{\rho(s)}{\rho(t)} d s=\left.\int_{r_{0}}^{r} \partial_{t}\right|_{t=s} \log h_{s}(t) d s \\
& \quad-\left.\int_{r_{0}}^{r} \partial_{t}\right|_{t=s} \log (1+(t-s) z(t)) d s=\log Y(r)+\log L(r) .
\end{aligned}
$$

We saw that $z^{\prime}(t) \geq z(t)^{2}$ yields concavity of $L$. For all $r \in(0,1)$ :

$$
\begin{aligned}
(\log Y)^{\prime}(r) & =\left.\partial_{t}\right|_{t=r} \log h_{r}(t) \\
(\log Y)^{\prime \prime}(r) & =\left.\partial_{t}^{2}\right|_{t=r} \log h_{r}(t)+\left.\partial_{s} \partial_{t}\right|_{t=s=r} \log h_{s}(t)
\end{aligned}
$$

$\left.\partial_{s} \partial_{t}\right|_{t=s=r} \log h_{s}(t)=$ Rigiditity $\left.\partial_{s} \partial_{t}\right|_{t=s=r} \log (1+(t-s) z(t))=-z^{\prime}(r)+z^{2}(r) \leq 0$. Hence, using differential char. of $\mathrm{CD}\left(K_{0}, N\right)$ density for $h_{r}(t)$ at $t=r$ :
$(\log Y)^{\prime \prime}(r)+\frac{\left((\log Y)^{\prime}(r)\right)^{2}}{N-1} \leq\left.\partial_{t}^{2}\right|_{t=r} \log h_{r}(t)+\frac{\left(\left.\partial_{t}\right|_{t=r} \log h_{r}(t)\right)^{2}}{N-1} \leq-K_{0}$

## Thank you very much!


[^0]:    - $(X, d, m)$ satisfies $C D_{\text {Lip }}^{1}(K, N)$ if $C D_{u}^{1}(K, N) \forall 1$-Lipschitz $u$.

